
 

  1 

Asian Journal of Agriculture and Biology 

https://doi.org/10.35495/ajab.2024.213  

 
Green silver nanoparticles ameliorate oxidative stress and apoptosis induced by 

gamma irradiation in rat pancreas 

2, Noha Hamed1, Kouther Alharthany1*, Mody Albalawi1, Sahar Khateeb1, Raghad Aljohani1Almudayni Marzouqah 

1Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia 

2Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt 

*Corresponding author’s email: skhateeb@ut.edu.sa 

Received: 14 October 2024 / Accepted: 26 November 2024 / Published Online: 13 January 2025 

 

Abstract 

Radiation-related toxicity is a major concern for certain tissues and organs in radiation oncology practice. In 

abdominal tumor radiation treatment, the pancreas is particularly sensitive to radiation and should be considered 

at risk. The primary causes of acute pancreatitis after exposure to gamma radiation are oxidative damage and 

reactive oxygen species (ROS). The purpose of this study is to assess the efficacy of matcha silver nanoparticles 

(M-AgNPs) in mitigating oxidative stress and apoptosis induced by gamma radiation in the pancreas of female 

rats. Rats were exposed to 6 Gy of gamma radiation and subsequently administered an oral treatment with matcha 

(M) or M-AgNPs (10 ml/kg/day) for 14 days. We examined apoptotic markers such as caspase 3, B-cell 

lymphoma-2 (BCL2), and B-cell lymphoma-2-associated protein X (BAX) to evaluate their impact on cell 

survival. Additionally, the study investigated the modulation of antioxidants, glutathione S-transferases (GST), 

and malondialdehyde (MDA). The findings indicated that the administration of M-AgNPs for two weeks post-

radiation exposure is more efficacious in diminishing lipid peroxidation and suppressing apoptotic indicators 

compared to conventional M treatments. M-AgNPs significantly (p < 0.05) reduced the elevation of MDA and 

demonstrated a considerable (p < 0.05) increase in GST. Moreover, it exhibited a markedly elevated level (p < 

0.05) of BCL-2 and a significantly decreased level of Bax and caspase-3 (p < 0.05) in comparison to irradiated 

rats. The results of the histopathological investigations showed a notable enhancement in the histological 

characteristics of pancreatic tissue. In conclusion, the finding indicated that the AgNPs synthesized from matcha 

could potentially mitigate the adverse effects of radiation exposure. Further investigation is required to elucidate 

specific molecular pathways and their long-term consequences. 
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Introduction 
  

While radiation therapy (RT) is a highly efficacious 

method for addressing malignant tumors, it has the 

potential to inflict damage on adjacent healthy tissues 

and give rise to severe adverse effects (Rezaeyan et al., 

2016). The pancreas is indeed very sensitive to 

irradiation and should be considered an organ at risk 

during radiation treatment for abdominal tumors. 

Previous studies by Gemici et al. (2013) established 

that abdominal irradiation induces substantial 

structural and functional alterations in pancreatic 

tissue. Also, Wydmanski et al. (2016) discovered in a 

prior investigation that abdominal irradiation resulted 

in exocrine functional loss of pancreatic tissue in a 

subset of patients. 

In RT, reactive oxygen species (ROS) are produced 

through the radiolysis of water in extracellular 

environments, and these highly reactive entities are 

detrimental to both tumor cells and nearby normal 

tissues (Zou et al., 2017). Moreover, radiation can 

provoke endogenous ROS generation in mitochondria 

and modify mitochondrial membrane permeability, 

thereby enhancing ROS production (Kim et al., 2015). 

Elevated levels of ROS can disrupt intracellular redox 

homeostasis (Kim et al., 2019), leading to cellular 

dysfunction and lipid peroxidation, which indicate 

oxidative stress and elevated malondialdehyde (MDA) 

levels (Wang et al., 2017; Zhang and Gurunathan, 

2016). Moreover, when the level of ROS-induced 

DNA damage exceeds the cell's ability to repair, the 

cell activates the apoptotic pathway. Consequently, it 

is imperative to implement strategies to mitigate 

oxidative damage and its consequences resulting from 

radiation exposure. 

Antioxidants are crucial for reducing oxidative 

damage resulting from radiation exposure. Cells 

possess an effective antioxidant system, comprising 

enzymes and non-enzymatic substances, that mitigates 

the detrimental effects of free radicals. Antioxidants 

can effectively suppress and/or treat chronic illnesses 

by obstructing or decelerating the interactions of 

biomolecules with free radicals through electron 

transfer, hence impeding the oxidative process. 

Antioxidant defense includes various mechanisms. 

These include delaying or inhibiting the production of 

free radicals; scavenging free radicals; converting free 

radicals into less toxic compounds; delaying the 

formation of secondary toxic active species; 

interrupting chain propagation reactions; enhancing 

the endogenous antioxidant defense system through 

synergistic interactions with other antioxidants; and 

chelating metal ions (Adwas et al., 2019; Costa et al., 

2021). 

Several disorders linked to oxidative stress are 

predominantly handled and treated according to the 

antioxidant properties of plant extracts. Furthermore, 

the notable antioxidant characteristics demonstrated 

by some nanomaterials present a compelling 

possibility to develop innovative regimens with 

enhanced and tailored efficacy. For instance, studies 

have demonstrated that the capacity of gold, silver, 

and selenium nanoparticles to eliminate redox-active 

radicals can mitigate oxidative stress (Saad et al., 

2017; Sood and Chopra, 2017; Thilagavathi et al., 

2016).  

According to a recent study by Ali et al. (2024), 

coating or doping nanoparticles with alternative 

materials reduces their negative effects, enhances 

stability, and reduces agglomeration. The green 

biosynthesis of metal nanoparticles utilizing medicinal 

plant extracts is a significant research focus due to its 

relevance in various fields, particularly in medicine 

administration (Chaudhuri et al., 2016). It is a suitable 

alternative to chemical methods due to its cost 

efficiency and environmental friendliness (Njue et al., 

2020). Plants include many bioactive compounds that 

help the synthesis of metal nanoparticles by serving as 

reducing and stabilizing agents (Begum et al., 2022). 

Silver nanoparticles (AgNPs) have been the subject of 

extensive research due to their cost-effectiveness and 

various advantageous properties, including optical, 

antimicrobial, anticancer, and antioxidant (Vijayan et 

al., 2018; Suresh et al., 2014). As a consequence, the 

fabrication of particles on a nanoscale has emerged as 

a promising therapeutic alternative (Bejarbaneh et al., 

2023). Polyphenolic compounds are natural 

compounds found in some plants, such as matcha 

green tea (M). M is the unfermented and finely ground 

green tea powder (Koláčková et al., 2020). It has many 

antioxidant and anti-inflammatory compounds 

(Kochman et al., 2020). The electron-donating 

capability of the phenolic compounds in matcha, 

which contributes to its higher total phenolic content, 

enables the reduction of silver ions to nanoscale silver 

particles. Recent studies indicate that nanoparticles 



Asian Journal of Agriculture and Biology 

https://doi.org/10.35495/ajab.2024.213                                                                               3 

created from bioactive phytochemicals have superior 

beneficial and effective qualities compared to 

conventional herbal medications (Habeeb et al., 2022). 

Consequently, the purpose of this study is to assess the 

efficacy of the biosynthesized M-AgNPs in mitigating 

oxidative stress and apoptosis induced by gamma 

radiation in the pancreatic tissue of female rats. 

 

Material and Methods 

Material  

Matcha green tea (Camellia sinensis) was bought from 

ILEAF NATURLS in the United States. Silver nitrate 

(99.0%) and polyvinylpyrrolidone-stabilized AgNPs 

were procured from Sigma Aldrich. All supplementary 

chemicals were of analytical grade and procured from 

reputable commercial providers. 

Preparation and characterization of M-AgNPs 

According to our previous research methodology 

(Hamed et al., 2023), M-AgNPs were created. M was 

used in the biogenic synthesis and green sonochemical 

approach to make AgNPs. M‐AgNPs were 

characterized using a variety of methods, including 

dynamic light scattering (DLS), high-resolution 

transmission electron microscopy (HR‐TEM), 

Fourier-transform infrared spectroscopy (FTIR), and 

thermogravimetric analysis (TGA). 

Experimental animal groups  

Rats were exposed to a single dose of whole-body 

gamma radiation (ℽ-Rad) at a rate of 0.33 Gy/min. ℽ-

Rad at the designated dose of 6 Gy has the potential to 

stimulate apoptosis by inducing oxidative stress 

(Hamed and Hammad, 2023). In this study, we used 

36 Wistar albino female rats, each weighing between 

180 and 200 g, and divided them into six groups: the 

control group (C) received deionized water orally. The 

M group was given 10 ml/kg/day of M orally for a 

period of 14 consecutive days (Ninsiima et al., 2023). 

The MN group received 10 ml/kg/day of M-AgNPs 

orally over a 14-day period. Rats in the R group 

received a single dose of 6 Gy of whole-body ℽ-Rad, 

after which they received no treatment for the duration 

of the experiment. After 24 hours of receiving a single 

dose of whole-body ℽ-Rad (6 Gy), the MR group 

administered 10 ml/kg/day of M orally for 14 

consecutive days. The MNR group received 10 

ml/kg/day of M-AgNPs orally for 14 consecutive days 

after receiving a single dose of whole-body ℽ-Rad (6 

Gy).  

Sample preparation 

Twenty-four hours after the final administration of M 

and M-AgNPs, the rats were euthanized for sample 

collection. Pancreas tissues were swiftly collected 

from the rats in various groups (10% wt/v) and 

homogenized in a Teflon apparatus using a cold PBS 

solution containing 0.16 mg/ml heparin. The 

homogenates underwent centrifugation at 4,000 rpm 

for 15 minutes at 4 °C. The transparent supernatant 

was employed to assess biochemical parameters 

subsequent to centrifugation. 

Oxidative stress evaluation 

Oxidative stress was measured using commercial kits 

(Bio-Diagnostic Company). Assessment of lipid 

peroxidation by measuring MDA. MDA was assessed 

via its reaction with thiobarbituric acid (TBA), 

resulting in the formation of colorful thiobarbituric 

acid reactive products (TBARs), which were 

quantified spectrophotometrically at 532 nm. MDA 

concentrations were measured in nmol/g of tissue. The 

GST kit assay quantifies overall GST activity 

(including cytosolic and microsomal) by assessing the 

conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) 

with reduced glutathione. The GST activity was 

determined at 340 nm in the sample and expressed in 

U/gm of tissue. 

Apoptotic markers evaluation 

ELISA kits were used to determine caspase-3 (Cat. 

No. CSB-E09785r; CUSABIO, Wuhan, China), BAX 

(Cat. No. SEB631Ra; Cloud-Clone Corp., USA), and 

BCL-2 (Cat. No. E-EL-R0648; Elabscience®, USA) 

in pancreas homogenate samples, according to the 

manufacturer's instructions.  

Histopathological examination 

After fixation with 10% formol saline, pancreatic 

tissue was washed and dehydrated in alcohol. 

Dehydrated specimens were cleaned in xylene, sealed 

in paraffin blocks, and sectioned at 4-6 µm thickness. 

Before histological analysis under an electric light 

microscope (Bancroft et al., 2013), tissue sections 

were deparaffinized with xylol and stained with 

H&E. Pancreatic tissue H&E sections were evaluated 

for the severity of apoptosis at ten distinct fields and  
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200x magnification using a three-point scale: 

(parenchyma apoptosis—0: absent, 1: focal (<5%), 2: 

sub-lobular (<20%), 3: lobular (>20%). The analysis 

was performed in a blinded manner (Heindl et al., 

2015).  

Statistical analysis 
Results were presented as mean values accompanied 

by standard error. The data were statistically examined 

utilizing one-way ANOVA, followed by Tukey's HSD 

multiple comparisons as a post-hoc test to identify 

significant differences across groups. The statistically 

significant level was set at P < 0.05. The software 

SPSS statistical version 20 (SPSS® Inc., USA) was 

used for all statistical analyses. 

Results   

Impact of M and M-AgNPs on oxidative stress 

The results of our study indicated that the 

concentrations of MDA and GST did not significantly 

(p > 0.05) rise in the M group (77.76 ± 1.41 and 1.51 

± 0.14, respectively) when compared to the control 

group (74.96 ± 2.19 and 1.24 ± 0.05 for MDA and 

GST). Furthermore, we detected no significant 

decrease (p > 0.05) in the MDA concentrations 

between the MN group (62.60 ± 4.05) and control 

groups. However, a substantial elevation in GST (p < 

0.05) was noted in the MN group (1.77 ± 0.06) in 

comparison to the control groups. On the contrary to 

the control group, the radiation group demonstrated a 

significant reduction in GST levels (0.29 ± 0.02; p < 

0.05) and a considerable increase in MDA levels 

(123.66 ± 3.57; p < 0.05) (Figures 1A and 1B).  

The data presented in Figure 1A clearly indicates that 

the MNR group significantly (98.48 ± 2.18; p < 0.05) 

mitigated the rise in MDA when compared to the 

irradiated group. However, the MR (111.93 ± 2.58) 

and R groups showed no significant decrease (p > 

0.05). In addition, MDA concentrations were 

significantly (p < 0.05) lower in the MNR group 

compared to the MR group. The GST concentration in 

the MR (0.82 ± 0.04; p < 0.05) and MNR (0.98 ± 0.02; 

p < 0.05) groups was considerably greater than the 

irradiated group, as displayed in Figure 1B. This 

study's results indicated that M-AgNPs enhance 

cellular antioxidant defenses and exhibit significant 

antioxidant efficiency in mitigating gamma radiation-

induced oxidative stress in the pancreas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Effects of M and M-AgNPs on oxidative stress markers in the pancreas. (A) MDA and (B) GST. Values 

were reported as means ± SE (n = 6). a = significant vs. the control group at p < 0.05; b = significant vs. the 

irradiation group at p < 0.05; c = significant between the MR and MNR groups at p < 0.05.  
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Impact of M and M-AgNPs on apoptotic 

markers 
The present investigation assesses the impact of M and 

M-AgNPs on pancreatic apoptotic markers. We 

evaluated the levels of BCL-2, Bax, and caspase-3 in 

all experimental groups. The M group exhibited 

significant increases in Bax (194.56 ± 2.92; p < 0.05) 

and caspase 3 levels (0.49 ± 0.047; p < 0.05), while 

BCL2 levels (0.87 ± 0.03) did not increase 

significantly when compared to the control group 

(110.56 ± 0.72; 0.34 ± 0.003; 0.83 ± 0.04 for Bax,  

caspase 3, and BCL2). Additionally, the MN group 

significantly elevated Bax levels (240.90 ± 7.87; p < 

0.05) compared to the control group, while caspase 3 

did not significantly increase (0.47 ± 0.006), and  

BCL2 (0.80 ± 0.02) levels did not significantly 

decrease. 

 

 

 

 

 

 

 

 

 

 

Furthermore, in contrast to the control group, the 

radiation group exhibited a notable decrease in BCL2 

levels (0.49 ± 0.04; p < 0.05), while Bax and caspase-

3 levels significantly increased (514.73 ± 6.65, p < 

0.05; 0.81 ± 0.051, p < 0.05, respectively) (Figure 2). 

Additionally, the findings of our study indicated that 

the MR and MNR groups exhibited a substantially 

higher concentration of BCL-2 (1.16±0.11, p < 0.05; 

1.36±0.04, p < 0.05, respectively) than the radiation 

group. In addition, the MR and MNR groups 

demonstrated a significantly reduced concentration of 

Bax level (383.56±4.31, p < 0.05; 417.2±7.60, p < 

0.05) and caspase-3 level (0.52±0.023, p < 0.05; 

0.45±0.03, p < 0.05) compared to the radiation group. 

Moreover, it is notable that in the treated groups, the 

M treatment demonstrated a significant decrease in 

Bax levels compared to M-AgNPs. 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

Figure 2. Impact of M and M-AgNPs on apoptotic markers: (A) BCL2, (B) Bax, and (C) Caspase 3 in the 

pancreas. Values were reported as means ± SE (n = 6). a = significant vs. the control group at p < 0.05; b = 

significant vs. the irradiation group at p < 0.05; c = significant between the MR and MNR groups at p < 0.05. 

 

Histopathological finding 

A section of pancreatic tissue from the control, M, and 

MN animal groups revealed a pancreas with a normal 

architecture. Both the exocrine and endocrine tissues  

 

of the pancreas exhibited typical histological 

characteristics. The lobules of the pancreas varied in 

size and morphology. The cellular components of the 

islets of Langerhans were organized normally, and the 

acinar structure contained typical proteinous 

eosinophilic materials. The pyramidal cells 
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comprising the acinar cells had acidophilic cytoplasm 

at their apex. The exocrine components of the pancreas 

are densely packed with acinar cells and organized into 

small lobules; they receive a score of 0 (figure 3a-b-c). 

The radiation-exposed animal group exhibited 

apoptosis of a subset of Langerhans cells. The acinar 

epithelial lining of the pancreas exhibited degenerative 

alterations accompanied by the absence of typical 

lobular architecture. Certain acinar cells exhibited 

vacuolation accompanied by nucleus pyknosis of 

score 3 (figure 3d). The animal group MR exhibited a 

significant quantity of Langerhans's cells undergoing 

apoptosis, with eosinophilic apoptotic bodies 

interspersed among them. Loss of normal lobular 

architecture accompanied by variable degenerative 

changes in the pancreatic acini; certain acinar cells 

exhibited vacuolation accompanied by pyknosis of 

their nuclei (figure 3e). In contrast, the histological 

appearance of the pancreatic lobules and islets of 

Langerhans improved notably in the animal group 

MNR. A subset of acinar cells exhibited pyknotic 

nuclei that were intensely stained, while the vast 

majority of acinar cells displayed vesicular nuclei. A 

few numbers of apoptotic Langerhans's cells were 

observed at score 1 (figure 3f). 
 

 

 

Figure 3. Photomicrograph of pancreatic tissue section showing: (a,b,c) normal architecture of Langerhans's islets 

and acini; arrow (d) numerous numbers of apoptotic Langerhans's cells; arrow (e) greater numbers of apoptotic 

Langerhans's cells arrow (f): Few numbers of apoptotic Langerhans's cells arrow (H&EX 200). 

 

Discussion  

 
In radiation oncology, radiation-related toxicity is a 

crucial clinical consideration. The pancreas, due to its 

close proximity to the stomach and duodenum, may be 

unintentionally exposed to radiation during irradiation 

of the gastro-duodenal region (Zucca et al., 2020) or 

through total body irradiation. So, this study aims to 

investigate the potential impact of biosynthesized M-

AgNPs in mitigating oxidative stress and apoptosis  

 

induced by γ-radiation in the pancreatic tissue of 

female rats. 

Contact with ionizing radiation (IR) produces ROS 

like hydroxyl radicals, superoxide, singlet oxygen, and 

hydrogen peroxide, which react with cellular 

components (Deng et al., 2019), causing 

morphological, metabolic, and cytotoxic changes due 

to oxidative stress and ROS, which damage lipids, 

proteins, and DNA (Hashim et al., 2020; Kamran et al., 

Group I 
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2021). Furthermore, Alattar et al. (2022) indicated that 

oxidative stress induces inflammation. In the present 

study, whole-body irradiation with a single radiation 

dose of 6 Gy elevated the MDA levels of pancreatic 

tissues. This aligns with research by Rezaeyan et al. 

(2016), who demonstrated that IR induces ROS within 

cells via water radiolysis, which subsequently assaults 

the fatty acids in the cell membrane and causes lipid 

peroxidation. Our results are also in line with those of 

other studies that used animal models and found that 

irradiation led to a significant rise in pancreatic MDA 

levels (Olgaç et al., 2006). 

Contrarily, after irradiation, MDA levels were 

considerably lower in the M-AgNPs treatment (MNR 

group) than in the irradiated group. Nevertheless, the 

MR and R groups exhibited no substantial difference. 

Furthermore, the MNR group had substantially lower 

MDA concentrations than the MR group. This 

demonstrates that the M-AgNPs substantially reduced 

the increase in MDA, which correlates with oxidative 

stress and cellular damage. The results of this study are 

consistent with those of Guntur et al. (2018). 

Furthermore, a prior study indicated that AgNPs 

synthesized from green tea exhibited enhanced 

scavenging activity relative to green tea alone 

(Ruchikaa and Sehgala, 2020); this increase in 

scavenging efficacy may be ascribed to the increased 

surface area. The coating of polyphenolic residues on 

the surface of AgNPs may augment the interaction and 

ability of polyphenols in M to donate hydrogen to free 

radicals. 

IR can adversely affect the antioxidant system; 

glutathione S-transferase (GST) is a crucial 

component of the cellular antioxidant system and 

plays key roles in preserving cellular homeostasis 

(Singh and Reindl, 2021). In the current investigation, 

GST levels markedly diminished in pancreatic tissues 

14 days following irradiation. The present findings 

align with previous research indicating that IR might 

adversely affect the antioxidant system, leading to 

diminished levels and activity of antioxidant enzymes 

(Zhu et al., 2019).  

However, following irradiation, the M or M-AgNPs 

treatment resulted in an increase in GST levels, 

indicating enhanced antioxidant defense mechanisms. 

Our results align with prior research indicating that 

plant-derived nanoparticles, such as silver, augmented 

the antioxidant activity of the respective molecules in 

the extract (Duman et al., 2016; Kanipandian et al., 

2014). Moreover, a study by Al-Shmgani et al. (2017) 

indicates that AgNPs demonstrate antioxidant 

potential. Furthermore, our results indicated that the 

antioxidant activity of M-AgNPs surpassed that of 

matcha alone. Our findings correspond with those of 

Abdel-Aziz et al. (2014), who noted that plant extracts 

containing AgNP exhibited elevated amounts of total 

phenolic compounds and total flavonoids in 

comparison to the plant extract utilized independently. 

Nonetheless, certain studies indicate no alteration or a 

reduction in ROS following AgNP treatment (Qian et 

al., 2015; Gallorini et al., 2016; Pereira et al., 2018). 

The study's findings indicated that M-AgNPs can 

augment cellular antioxidant defenses and show 

considerable antioxidant effectiveness in mitigating 

gamma radiation-induced oxidative stress in the 

pancreas. 

Apoptosis, a eukaryotic mechanism of cell death 

regulated by genetics, facilitates the controlled 

elimination of cells in order to preserve homeostasis 

and normal development (Singh et al., 2019). The cell 

survival and death are regulated by the equilibrium of 

pro-apoptotic and the anti-apoptotic BCL2 family 

proteins. The proteins in the BCL-2 family are divided 

into two groups: those that promote survival (BCL-2) 

and those that promote cell death (BAX) (Luna‐Vargas 

and Chipuk, 2016). Radiation-induced oxidative stress 

can initiate cell death by activating the mitochondria-

dependent apoptotic machinery. Apoptotic cell death 

involves the progressive activation of many cysteine-

dependent aspartate-directed proteases, commonly 

referred to as caspases. Furthermore, Chung et al. 

(2015) indicated that γ-radiation induces cell death via 

apoptosis and ROS generation. Elevated ROS levels 

trigger apoptosis by regulating the phosphorylation 

and ubiquitination of BCL2 family proteins, leading to 

the overexpression of pro-apoptotic genes (e.g., BAX) 

and the downregulation of anti-apoptotic genes (e.g., 

BCL2) (Li et al., 2004).  

Our findings indicated that radiation caused a 

considerable reduction in BCL2 levels, whereas Bax 

and caspase-3 levels markedly rose. This finding is 

consistent with Changizi et al. (2021), who 

demonstrated that radiation markedly downregulated 

the BCL2 gene while upregulating the BAX and 

CASP3 genes. The significant decrease in Bcl-2 

expression corresponds with prior research 

demonstrating the downregulation of this anti-

apoptotic protein following radiation exposure 
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(Rajabathar et al., 2023). In addition, the substantial 

increase in Bax expression highlights the pro-

apoptotic signaling, which is consistent with studies 

linking elevated Bax levels to radiation-induced 

apoptosis (Mukherjee et al., 2022). Moreover, it was 

noted that heightened caspase-3 expression resulted 

from augmented oxidative stress caused by radiation 

(Li et al., 2015). 

Conversely, our study's findings revealed that the MR 

and MNR groups demonstrated a significantly 

elevated level of BCL-2 compared to the radiation 

group. Furthermore, the MR and MNR groups had a 

markedly decreased level of Bax and caspase-3. M-

AgNPs may inhibit apoptosis by diminishing lipid 

membrane peroxidation and oxidative stress, which 

are critical mediators of apoptosis. The distinctive 

phytochemical features of M-AgNPs, characterized by 

a high concentration of antioxidants such as catechins, 

along with their physicochemical attributes that 

augment biological activity, may facilitate their 

capacity to suppress apoptosis. Moreover, the 

combination of matcha's antioxidant-rich 

phytochemicals with the powerful properties of 

AgNPs may produce a synergistic effect, whereby the 

whole therapeutic outcome exceeds the individual 

effects of each component. 

Conclusion 

Radiation-related toxicity is a major concern for 

certain tissues and organs in radiation oncology 

practice. So, this study aims to investigate the potential 

impact of M-AgNPs in mitigating oxidative stress and 

apoptosis induced by γ-radiation in the pancreatic 

tissue of female rats. The results showed that 

administering M-AgNPs for two weeks after being 

exposed to six gray gamma radiation is more effective 

in reducing lipid peroxidation and suppressing 

apoptotic indicators than the conventional M 

treatment. The findings indicate that M-AgNPs could 

potentially act as effective agents in mitigating 

damage resulting from ionizing radiation exposure. M-

AgNPs' unique phytochemical characteristics and 

their physicochemical characteristics enhance 

biological activity. Moreover, the combination of 

matcha's antioxidant-rich phytochemicals with the 

powerful properties of AgNPs may produce a 

synergistic effect, whereby the whole therapeutic 

outcome exceeds the individual effects of each 

component. Further investigation is required to 

elucidate specific molecular pathways and their long-

term consequences. 
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