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Abstract 
Zinc (Zn) is the most limiting micronutrient responsible for malnutrition. World 

Health Organization (WHO) reported deficiency of Zn is the 5th most significant 

cause of death and disease in underdeveloped world. However, 70% Pakistani soils 

are Zn deficient and responsible for Zn deficiency in crops. The present study aimed 

to mitigate Zn deficiency and improve them a nd Zn use efficiencies through 

synergizing dry region Zn solubilizing plant growth promoting rhizobacteria (PGPR) 

by coating on Zn coated urea. Pre-isolated dry region Zn solubilizing isolates were 

evaluated for zinc solubilization, urease activity, siderophores production, organic 

acid production and ACC-deaminase activity. Four effective strains Bacillus 

amyloliquefaciens (IUB-34), Klebsiella variicola (IUB-96), Klebsiella variicola 

(IUB-80) and Klebsiella pneumoniae subsp. pneumoniae (IUB-93) and their 

consortium coated on Zn coated urea. This improved product was tested for N and Zn 

release pattern, growth promotion and Zn biofortification in pot trial on wheat. 

Results showed that SPAD chlorophyll value, root, shoot length and their dry weight 

was significantly improved (p≤ 0.05) by 19.4, 20.3, 45.9, 27.3 and 39.5%, 

respectively, over control. Similarly, N, P, K, Zn, Fe in grains and 100-grain weight 

was significantly increased (p≤ 0.05) by 97.5, 23.5, 61.1, 63, 32 and 50.5%, 

respectively, over control. The results confirmed that dry region Zn solubilizing 

bacterial consortium coated on Zn coated urea is an efficient method for the 

biofortification of Zn in wheat grains and can effectively overcome Zn deficiency in 

humans. 
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Introduction 
 

Micronutrients are important for productivity, growth 

and quality of crop at optimal level because they do 

their activity for appropriate growth functioning and 

quality development of different crop plants. Zinc is 

the essential micronutrient on earth and important for 

all living organisms (Shaikh and Saraf, 2017; Nazir et 

al., 2016). In plant tissues Zn exists in low 

concentrations of around 5 to 100 mgkg-1 (Saravanan 

et al., 2004) which is important for proper working 

and development, quality, optimum growth and 

productivity of crop plants (Jha, 2019). It performs a 

significant role in the production of starch and 

chlorophyll synthesis in plants (Rehman et al., 2018), 

phytohormones production (gibberellins, auxins, 

cytokinins and absicic acid) (Imran et al., 2014), 

carbohydrates and N metabolism as well as resistance 

against oxidative damage or oxidation (Potarzycki 

and Grzebisz, 2009; Cakmak, 2008). Photosynthesis, 

pollens formation, cell membrane integrity, resistance 

against diseases (Gurmani et al., 2012), antioxidant 

enzymes levels (Sbartai et al., 2011) and reactions of 

energy transfer (Broadley et al., 2012) are also 

performed by Zn. It also plays a positive role in the 

water uptake regulation and decline the toxic effect 

of salt and heat stress on crop plant (Peck and 

McDonald, 2010). According to WHO (2012), 

deficiency of Zn is the main reason of disease and 

death in human because they mostly depend on 

cereals like wheat, maize and rice for their routine 

caloric intake. The vital biological activities, such as 

structural, regulatory and catalytic functions in the 

body of human beings, need to be a suitable amount 

of Zn contents for appropriate functioning 

(Mohammadi et al., 2021). 

In Pakistan application of essential nutrients always 

restricted to N (nitrogen), P (phosphorus) and K 

(potassium). In Pakistan, due to alkaline-calcareous 

soils, Zn is the most deficient micronutrient (Rashid 

and Ryan, 2008). In semi-arid to arid regions, amount 

of Zn in soil is low due to different factors of soil 

(Imran et al., 2014). In Pakistan almost 37% 

population is affected by Zn malnutrition (UNDP, 

2003). Living organisms require Zn in optimum level 

for the healthy development and growth (Huang et 

al., 2022). Micronutrients deficiency exists in most 

cereals’ crops, which can affect worldwide over 2 

billion population (Waqeel and Khan, 2022). Wheat 

holds significant importance as a staple food crop in 

Pakistan (Mirza et al., 2015). Wheat serves as a 

primary cereal crop, contains valuable nutrition, 

especially for the countries which have limited 

resources (Yaqoob et al., 2022). Due to its taste and 

nutritional value, wheat in food crops is the most 

popular like vitamins, proteins and calories (Ahmad 

et al., 2022). 

Keeping in view, the importance of Zn for plants and 

humans, different methods are being used to improve 

the Zn bio-availability in soil and its further 

utilization by crops, like fortification (addition of 

require nutrient in different food items), food 

diversification/modification (food 

processing/cooking according to nutritional demand), 

supplementation (clinical nutrients of nutrients) and 

biofortification in which bioavailable nutrient 

elements improvement in edible part of plants 

(Mayer, 2008). It is a sustainable and economical 

method to minimize the problem of low Zn 

concentration in food crops (Bouis and Welch, 2010). 

In human beings, biofortification is the ultimate way 

to decrease the Zn deficiency and enhance the soil-

crop-human inter-relationship (De Valença et al., 

2017). The method of biofortification aims to 

increase the minerals like Zn, Fe (iron), I (iodine), Se 

(selenium) etc. in grains, so that people that consume 

such grains improve the mineral intake (De Valença 

et al., 2017). In low-income areas malnutrition of 

micronutrient or hidden hunger is highly prevalent 

due to their less purchasing power and ultimately, 

they can’t afford supplements or a healthier diet that 

contain micronutrients. The most sustainable method 

for alleviating the micronutrient deficiency in these 

conditions is to improve the nutritional value of the 

widely consumed staple food grains (Cakmak, 2008). 

An efficient biofortification technique should confirm 

that yield of grains increases or at least maintained, 

improve the Zn contents in grains for improving the 

benefits of human health, and stable grain 

performance across the environments (Zou et al., 

2012). An encouraging and innovative technique for 

biofortification of zinc is the use of plant growth 

promoting rhizobacteria; a particular type of bacteria 

which could solubilize insoluble or fixed amount of 

soil Zn and accessible for plants (Mumtaz et al., 

2017; Imran et al., 2014). The rhizobacterial strains 

have the capability to release 2-ketogluconic acid 

(Fasim et al., 2002), gluconic acid, 5-ketogluconic 

acid (Saravanan et al., 2007), chelating ligands, 

secrete amino acids, vitamins and phytohormones 

(Saravanan et al., 2004), these compounds can 

solubilize fixed or insoluble forms of Zn. Different 
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PGPR inoculation in plants performed increased Zn 

contents and growth. These inoculants are Bacillus 

subtilis (Samaras et al., 2022) Bacillus aryabhattai 

(Prathap et al., 2022) and Rhizobium and 

Pseudomonas (Naz et al., 2016). Among bacterial 

isolates to shown solubilization of Zn on laboratory 

stage are Serratia sp., Burkholderia sp., Klebsiella 

sp., Gluconacetobacter sp., Acinetobacter sp., 

(Haroon et al., 2022), Pseudomonas spp., 

(Hashemnejad et al., 2021), Enterobacter sp., and 

Citrobacter sp. (Ajmal et al., 2021). 

Keeping in view, the Zn deficiency in soil and less 

amount of Zn in food crops like cereals, because they 

are important staple diets in Pakistan, a study was 

planned to obtain the following objectives, to 

determine the effect of dry region Zn solubilizing 

strain coated on Zn coated urea, on temporal release 

of N and Zn in soil under axenic conditions. Also 

evaluate the effect of Zn solubilizing strains of dry 

region coated on Zn-coated urea on growth, 

biofortification and yield of wheat in pot condition. 

 

Material and Methods 
 

Characterization of Zn solubilizing PGPR 

Dry region rhizobacterial strains IUB-34, IUB-80, 

IUB-93, IUB-96 was taken from Soil Microbiology 

and Biotechnology Laboratory, Faculty of 

Agriculture and Environment, The Islamia University 

of Bahawalpur. The PGPR strains were characterized 

for the solubilization of Zn, siderophore production, 

urease activity, ACC-deaminase production. 

Qualitative Zn solubilization ability of bacteria were 

assessed by using Bunt and Rovira media with the 

addition of 0.1% ZnO as a Zn source to examine the 

capability of rhizobacterial strains to solubilize ZnO 

(Bunt and Rovira, 1955). The amount of solubilizing 

of each particular PGPR isolates was checked by 

calculating the solubilization zone around the 

bacterial colonies according to Saravanan et al. 

(2004). For the determination of Zn quantitatively, 

broth culture using Bunt and Rovira medium were 

prepared with the addition of 0.1% ZnO and adjust to 

pH 7.0. The concentration of solubilized Zn was 

obtained by using atomic absorption 

spectrophotometer and comparing the Zn 

concentrations in inoculated sample with un-

inoculated control in mg L-1 (Saravanan et al., 2004). 

The Chrome Azurol S (CAS) agar media was used 

for the determination of the siderophore production 

ability of PGPR strains (Gopalakrishnan et al., 2011). 

Supplementation of 3 mM ACC, (NH₄)₂SO₄ and 

MgSO4 in minimal medium (Dworkin and Foster, 

1958) was used to check the activity of ACC-

deaminase in PGPR strains as proposed by Penrose 

and Glick (2003). For the determination of urease 

activity, the pre-isolated PGPR strains was inoculated 

in Christensen’s urea-broth media and incubated at 

30±2°C for 24 hours. The presence of pink color in 

growth medium will consider urease positive 

(Cappuccino and Sherman, 2005).    

 

Determination of microbially produced organic 

acids  

The Zn solubilizing bacterial strains of dry region 

IUB-34, IUB-80, IUB-93, IUB-96 was inoculated in 

the test tubes which have 50 mL of LB broth media 

with and without ZnO and incubated at 28ºC for 48 h. 

Each sample after incubation was centrifuged at 4 ºC 

and 10,000rpm and supernatant were collected 

separately. The metabolites in the supernatant were 

extracted three times in methanol (HPLC grade) in 

1:1 ratio by the use of separating funnel. Organic 

acids (ferulic acid, cinamic acid, chlorggenic acid, 

caffeic acid, gallic acid and syrirgic acid) was 

detected from the extracted samples using HPLC 

(Butsat et al., 2009). 

 

Compatibility test 

Zinc solubilizing bacterial isolates was cross streaked 

on agar plates of LB media and incubated at 30 ± 1 

°C for 48h. At the point of intersection, compatible 

isolates were showing no zone of inhibition at the 

point of intersection (Fukui et al., 1994).  

 

Identification of bacterial strains through 16S 

rRNA Gene Sequencing  

The pre-isolated Zn solubilizer, ACC-deaminase-

producing, siderophores producing and urease 

producing strains were determined for molecular 

identification by partial gene sequence of 16S rRNA. 

The first step is, DNA extraction that were carry out 

from strains culture by using a proteinase K 

containing extraction buffer (Mahuku, 2004). 

Extraction of DNA was carried out by a polymerase 

chain reaction (PCR) to amplify the 16S rRNA for 

sequencing by 1492R and 27F universal primer pairs. 

The reaction material contained 3.7 µL of crude 

DNA, 3 µL of 1492R (10 µM), 3 µL of 27F (10 µM), 

and 7.5 µL of H2O. The situations for thermal cycling 

were 1 cycle for 1 min at 95°C, followed by 94°C, 

for 1 min 32 amplification cycles and at 55°C 20s 
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cycle of hold. The products obtained after PCR were 

send to the commercial-service for 16S rRNA 

sequencing, Macrogen® Seoul, Korea. The sequences 

of nucleotide obtained from Macrogen were BLAST 

to compare with the available NCBI genome 

database. According to the Thompson et al. (1997) 

procedure, a phylogenetic tree was created on 

MEGA-X software. According to neighborhood 

joining method NJ Plot was used to process the data 

(Perrière and Gouy, 1996).  

 

Formulation of bacterial culture for coating on Zn 

coated urea  

The broth-culture was prepared by using pre-isolated 

strains in conical flask (1000 ml) containing the 

media described by Bunt and Rovira (1955). The 

flasks after inoculation were incubated at 28 ± 1°C 

for 48 h at 100 rpm in shaking incubator. Before use, 

dilute the cell culture to maintain the homogeneous 

cell density and achieved the optical density of 0.5 at 

535 nm [108 –109 cfu (colony forming units)/mL]. 

The bacterial consortium was made by equally 

mixing the homogenous culture of four strains in 

1:1:1:1 ratio and further single strain and consortium 

were applied at 3% v/w on urea for effective coating. 

Zn coated urea with dry region zinc solubilizing 

bacteria was formulated by the standard procedure 

adopted for BNNF (Zabardast Urea) producer 

company First Biotech LLC Lahore. 

 

Determination of zinc and bacterial population in 

coated fertilizer 

Available Zn present in soil/fertilizer was measured 

by extraction procedure of ammonium-bicarbonate 

DTPA described by Soltanpour and Schwab (1977), 

and later revised by Soltanpour and Workman (1979) 

on atomic absorption spectrophotometer. Total Zn 

analysis from soil/fertilizer sample, mixed 0.2-gram 

sample with 6 mL concentrated sulphuric acid in 100 

ml conical flask and placed in standard room-

temperature for overnight. After that add 1 ml 

hydrogen per oxide into flask and heated on hot plate 

for 1 hrs at 300 °C. Last step was performed again 

and again till the milkish white or transparent color 

appearance. After that dilute the sample up to the 

mark and performed further analyses. The Zn was 

determined on atomic absorption spectrophotometer 

(Model: 240 FS, Agilent Technologies, USA) by the 

using of standard procedure defined by Ryan et al. 

(2001). For microbial population take 1 gram 

soil/fertilizer sample and perform standard pour plate 

or serial dilution technique was used to examine the 

population of bacteria in terms of CFU (colony-

forming units) (Alexander, 1983). 

 

Release pattern of Zn and N   

A pot/jar trial was conducted at the growth room of 

Department of Soil Science to investigate the rate of 

Zn and N release form the final product with different 

interval of time. For this experiment soil was taken 

from the research farm area of Department of Soil 

Science, The Islamia University of Bahawalpur. 

Before conducting the experiment, soil analysis was 

performed.  

 

Pre-sowing soil analysis  

Bouyoucos hydrometer method was used to 

determine the fractions of sand, clay and silt in the 

soil samples (Moodie et al., 1959). However, the 

textural class was examined by the use of USDA 

Texture Triangle online. From saturated soil paste 

ECe and pH was determined by using the method of 

21a defined in U.S. Salinity Laboratory Staff (1954) 

by the use of EC and pH meter. Soil organic matter 

was determined, as per standard procedure proposed 

by Walkley and Black, (1934) through oxidation 

with potassium di chromate and titration with 0.5 M 

Ferrous Ammonium Sulfate solution. For total N 

measurement sample was digested in H2SO4 

according to the method described by Hibbard’s and 

Ginning and distillation was done in Kjeldhal’s 

digestion and distillation apparatus (Jackson, 1962).  
 

Table-1. Physio-chemical parameters of soil 

before sowing 

Characteristics Unit Values 

Clay % 15.5 

Silt % 38.6 

Sand % 46.2 

Textural Class -- Loam 

Ece (dS m-1) 1.3 

pHs -- 7.8 

Saturation Percentage % 42 

Nitrogen % 0.02 

Available Potassium mg kg-1 105 

Available Phosphorus mg kg-1 5.1 

Extractable Zn mg kg-1 0.6 

Iron mg kg-1 0.65 

Organic Matter % 0.56 
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Watanabe and Olsen, (1965), method was performed 

for the detection of extractable phosphorus and 

reading were taken in spectrophotometer (Model 

G6860A, Agilent Technologies Cary 60 UV-Vis, 

Australia). Extraction of soil was done with 1 N 

ammonium-acetate solution and extractable 

potassium was measured by using Flame-Photometer 

(Model: BWB-XP, BWP Technologies, Uk) (Method 

1la, Salinity Laboratory Staff, 1954). To measure the 

soil urease activity, a soil sample was prepared 

according to the method described by Alef and 

Nannipieri (1995) and optical density was measured. 

Pre-sowing soil analysis data was shown in Table 1. 

 

Pot trial 

A pot study was carried out to assess the 

effectiveness of microbially impregnated Zn coated 

urea with respective isolates. For this purpose, wheat 

was sown in pots in their respective growing season 

and coated fertilizers were applied as compare with 

market product of Zn coated urea and urea+ZnSO4 

supplementation. The recommended fertilizer doses P 

and K were applied before sowing and all other 

agronomic practices were followed until harvest. 

Data was recorded at maturity for growth parameters 

and at harvest for yield and quality parameters. 
 

Treatment plan for pot trial  

T0 Control T4 
IUB-80 (Coated on 

Zn coated Urea) 

T1 
Simple Urea + 

ZnSO4 
T5 

IUB-96 (Coated on 

Zn coated Urea) 

T2 
BNFF Urea 

(Zabardast Urea) 
T6 

IUB-93 (Coated on 

Zn coated Urea) 

T3 
IUB-34 (Coated on 

Zn coated Urea) 
T7 

Consortium (Coated 

on Zn coated Urea) 
 

Plant analysis  

To examine the physiological characters, plants are 

analyzed when physiological maturity was achieved 

(chlorophyll SPAD value). While the growth 

parameters were examined at the plant maturity and 

also data regarding yield parameters was conducted. 

For analysis of mineral, take 0.2 g dry homogeneous 

plant sample and mixed in 100 ml conical flask with 

6 mL concentrated sulfuric acid and at the room 

temperature placed for overnight. After that add the 1 

mL H2O2 in the flask and placed on hot plate for 

heating for 1 hour at 300 °C. Repeat this step again 

and again till the presence of milky white or 

transparent color. After that dilute the sample up to 

the mark in the conical flask and store it for further 

analysis. Measure the macro and micronutrients N, P, 

K, and Zn, Fe using standard procedure described by 

Ryan et al. (2001). 

 

Statistical analysis 

The data collected from this research was analysed 

by statistically using CRD (completely randomized 

design). However, the treatment means was 

computed through Tucky’s test (HSD) for significant 

differences among treatments by using Statistix v. 8.1 

(Analytical Software, Tallahassee, FL, USA) (Steel et 

al., 1997). 

 

Results  
 
Characterization of pre-isolated zinc solubilizing 

isolates 

Zinc solubilizing isolates of dry region were 

characterized for zinc solubilization qualitatively and 

quantitatively, siderophore production, ACC-

deaminase, urease production. Results of Table 2 and 

3 indicate that all the isolates taken from Soil 

Microbiology and Biotechnology Laboratory, 

Department of Soil Science, The Islamia University 

of Bahawalpur, Pakistan were positive against zinc 

solubilization. While the isolate IUB-34 shows the 

maximum halo zone diameter that was 21.3 mm, 

however the maximum solubilization efficiency, 

solubilizing concentration and solubilizing index 

were shows the isolate IUB-96 that is 240.3%, 26 

mgL-1, 3.6 respectively. While the isolates IUB-80, 

IUB-93 also showed effective results in Zn 

solubilization. These isolates (IUB-34, IUB-80, IUB-

96, IUB-93) also showed positive results in 

production of siderophore, ACC-deaminase activity 

and urease activity. These selected isolates were 

further used for evaluation.   

 

Organic acids production 

Results of dry region Zn solubilizing isolates showed 

different patterns in the chromatogram of 

rhizobacterial metabolites and different peaks. In Zn 

solubilizing metabolites identified the different 

compounds such as malic acid, acetic acid, citric 

acid, succinic acid, gibberallic acid, gluconic acid 

and oxalic acid (Table 4). All rhizobacterial isolates 

produce citric acid, gibberallic acid, gluconic acid 

and oxalic acid. The highest amount of oxalic acid 

was measured in the metabolite of Bacillus 

amyloliquefaciens IUB-34 (16 μg mL-1), followed by 

Klebsiella pneumoniae IUB-93 (12.5 μg mL-1), 
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Klebsiella variicola IUB-96 (11 μg mL-1) and 

Klebsiella sp. IUB-80 (7 μg mL-1). Klebsiella 

pneumoniae IUB-93 synthesis all organic acids such 

as acetic acid (1.09 μg mL-1), malic acid (0.34 μg mL-

1), succinic acid (0.41 μg mL-1), citric acid (5.4 μg mL-

1), gibberallic acid (1.98 μg mL-1), gluconic acid (0.63 

μg mL-1) and oxalic acid (12.5 μg mL-1). Malic and 

succinic acids were not detected in the metabolites of 

Klebsiella sp. IUB-80 and acetic and succinic acids 

were not recorded in the metabolites of Bacillus 

amyloliquefaciens IUB-34. 

 

Table-2. Effect of rhizobacterial isolates on solubilization of zinc, siderophore production, ACC-

deaminase and urease production (n=3).  

Bacterial 

Isolates 
Solubilization of Zinc 

Siderophore 

Production 
ACC-Deaminase Urease Production 

IUB-34 +++ ++ ++ +++ 

IUB-80 +++ +++ +++ +++ 

IUB-93 ++ +++ +++ +++ 

IUB-96 +++ ++ +++ ++ 

The symbol (+++) shows significant activity and (++) shows less significant or good traits. 

 
Table-3. Qualitative and quantitative zinc solubilization of dry region zinc solubilizing isolates (n=3).  

Bacterial 

Isolates 

Solubilization of Zinc 

SI CD (mm) HZD (mm) SC (mgL-1) SE (%) 

IUB-34 3.6 a ± 0.05 8.2 b ±0.01 21.3 ab ±0.29 24.7 b ±0.29 259.8 c ±0.50 

IUB-80 3.6 a ±0.08 7.5 d ±0.02 19.7 b ±0.58 24 c ±0.50 262.7 b ±0.50 

IUB-93 3.6 a ±0.05 8.4 a ±0.01 21.7 a ±0.29 26 a ±0.87 258.3 c ±0.30 

IUB-96 3.7 a ±0.04 7.8 c ±0.01 20.7 ab ±0.76 25 b ±0.50 265.4 a ±0.01 

LSD 

(p≤0.05) 
0.2123 0.0414 1.9597 2.1741 1.4445 

Data shown the means of three replicates; same letter(s) in the means within the column not different 

significantly according to the (LSD) test at p ≤ 0.05; SI = solubilization index; CD= colony diameter HZD = 

halo zone diameter; SC = solubilized concentration; SE = solubilization efficiency.  

 

Table-4. Determination of organic acids by using HPLC (n=3).  

Organic Acids Dry Region Zinc Solubilizing Strains 

 

Bacillus 

amyloliquefaciens  

IUB-34 

Klebsiella sp.  

IUB-80 

Klebsiella variicola 

IUB-96 

Klebsiella pneumoniae 

IUB-93 

(μg/mL) 

Malic acid 1.1 d ND ND 0.34 f 

Acetic acid ND 0.86 c 0.77 e 1.09 d 

Citric acid 3.4 c 2.2 b 4.8 c 5.4 b 

Succinic acid ND ND 1.05 d 0.41 f 

Gibberellic acid 5.2 b 0.54 d 8.3 b 1.98 c 

Gluconic acid 0.99 e 0.39 e 0.68 f 0.63 e 

Oxalic acid 16 a 7 a 11 a 12.5 a 

ND = Not detected 
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Figure-1. Zinc solubilization due to dry region rhizobacterial isolates of IUB-34, IUB-80, IUB-93 and 

IUB-96 (Halo zone around the colony shows the zinc solubilization) 

 

 
Figure-2. Urease activity due to dry region rhizobacterial isolates of IUB-34, IUB-80, IUB-93 and IUB-96  

 

Compatibility test 

The selected zinc solubilizing bacterial isolates of dry 

region was cross streaked on agar plate media to 

check the compatibility of isolates. Results confirm 

that all the selected four isolates of zinc solubilizing 

bacteria of dry region (IUB-34, IUB-80, IUB-96, 

IUB-93) were compatible with each other. Further 

these compatible isolates prepared for coating on zinc 

coated urea to assess the growth promotion and bio-

fortification of zinc in wheat.  
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Identification of dry region zinc solubilizing 

isolates 

Identification of pre-isolated zinc solubilizing isolates 

of dry region (IUB-34, IUB-80, IUB-96, IUB-93) 

were through partial gene sequence of 16S rRNA 

(Figure 3). The bacterial isolate IUB-34 was 100% 

resembled Bacillus amyloliquefaciens sp. and the 

isolate were identified as Bacillus amyloliquefaciens 

sp. IUB-34 and further submitted to NCBI under the 

accession number ON936039. The rhizobacterial 

isolates IUB-80 and IUB-96 was 98% similar with 

Klebsiella variicola sp. and these isolates were 

identified as Klebsiella variicola sp. IUB-80 and 

Klebsiella variicola sp. IUB-96 and submit to NCBI 

with accession numbers ON936042 and ON936040 

respectively. IUB-93 isolate were similar to 

Klebsiella pneumoniae subsp. Pneumonia sp. and 

their similarity is 95%. This isolate is identified as 

Klebsiella pneumoniae subsp. Pneumonia sp. IUB-93 

and submitted to NCBI with accession number 

ON936041. 

 

Determination of bacterial population and zinc in 

coated fertilizer 

Data shown in Figure 4 (A and B) represent the 

bacterial population and Zn contents in Zn coated 

urea fertilizer coated with different dry region Zn 

solubilizing isolates and their consortium as compare 

with already develop product of BNFF Urea Z© 

(Zabardast Urea). Maximum bacterial population, 

available and total Zn contents was recorded in T5 

treatment where bacterial consortium of four isolates 

was coated on zinc coated fertilizer which contains 

49 ×104, 1.01% and 1.33% respectively, over un-

inoculated control. Further increase in population, 

available and total zinc was observed in T1 (IUB-

34), T2 (IUB-80), T3 (IUB-96) and T4 (IUB-93) 

treatment which contain (44 ×104, 0.97%, 1.3%), (41 

×104, 0.94%, 1.29%), (42 ×104, 0.92%, 1.29%), (38 

×104, 0.91%, 1.29%) respectively. While in BNFF 

Urea Z© (Zabardast Urea) bacterial population and 

available and total zinc was (42 ×104, 0.8%, 1.28%) 

observed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3. Phylogenetic tree of the bacterial isolates Bacillus amyloliquefaciens (IUB-34), Klebsiella 

variicola (IUB-96), Klebsiella variicola (IUB-80), Klebsiella pneumoniae subsp. pneumoniae (IUB-93) 

(accession number: ON936039, ON936042, ON936040, ON936041). 
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(21) CP095132. Klebsiella pneumoniae strain Iso00267

(24) MF980913. Klebsiella sp. strain NCtB17

(23) CP033946. Klebsiella pneumoniae subsp. pneumoniae strain ARLG-3135
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Figure-4. Effect of different dry region zinc solubilizing isolates coated on Zn coated urea on (A) bacterial 

population, (B) available and total zinc contents in coated fertilizer, n = 3. Bars share similar letter(s) 

were not vary from each other at p≤0.05 statistically. 
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1st day of study to 2.03 mg kg-1 of zinc and 56.3 mg 

NH4-N kg-1 h-1 urease activity after 75 days was 

recorded under T7 treatment which was 165% more 

than the soil Zn contents and 604% more than urease 

activity at the start of the incubation.  

While the treatment with already developed product 

BNFF Urea Z© (Zabardast Urea) was applied (T2) 

also showed increasing Zn content after 45th days of 

incubation and reached 1.5 mg kg-1 Zn at the last day 

of incubation study. But in urease activity treatment 

T2 shows decline in urease activity and reached 26.3 

mg NH4-N kg-1 h-1 at the end of study. However, the 

treatment where only Urea+ZnSO4 (T1) was used 

showed enhance in the concentration of zinc and 

urease activity at the 30th days of study, but after that 

immediate shows decline in Zn and urease activity as 

compare with microbial and Zn coated urea. 

 

 

 
Figure-5. Effect of different treatments of dry region zinc solubilizing isolates coated on Zn coated urea 

on (A) release of Zn and (B) urease activity in soil with different interval of time n = 3. 
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Pot trial wheat 

Growth parameters 

In pot trial of wheat, results regarding growth 

parameters confirmed that the use of different 

bacterial isolates of dry region and their consortium 

coated on Zn coated urea along with already develop 

product BNFF Urea Z© (Zabardast Urea) and zinc 

sulphate, enhance the shoot length, root length, shoot 

dry weight, root dry weight and spike length over 

control (Table 5). However, shoot length, root length 

and their dry weight of wheat was only increase when 

the application of zinc coated fertilizer coated with 

dry region Zn solubilizing isolates and their 

consortium was done. Notably, the maximum 

improvement in root length, shoot length and their 

dry weight was observe in treatment contain 

consortium coated on Zn coated urea and these are 

20.3, 45.9, 27.3 and 39.5% over control. While spike 

length of wheat was also improved with the 

application of consortium coated on Zn coated urea 

and showed 33% over control where no Zn source 

was applied. 

 

SPAD chlorophyll value 

The effectiveness of different bacterial isolates of dry 

region and their consortium coated on zinc coated 

urea along with already develop product BNFF Urea 

Z© (Zabardast Urea) and zinc sulphate on the 

chlorophyll SPAD value of wheat plant are shown in 

(Table 5). Significant increase was observed in 

chlorophyll contents was seen in treatment which 

contains consortium coating on zinc coated urea that 

is 19.4% over control were no zinc was used. While 

the treatment which contain BNFF Urea Z© 

(Zabardast Urea) also shows better results as 

compared to control that is 8.1% improvement in 

chlorophyll contents. 
 
100-grain weight 

Significant improvement in the 100-grain weight was 

observed in wheat crop as a result of the application 

of the treatments containing different bacterial 

isolates consortium from dry region coated on zinc 

coated urea along with BNFF Urea Z© (Zabardast 

Urea) and zinc sulphate (Figure 6). The highest 

improvement in grain weight was observed in 

treatment which contains consortium coating on zinc 

coated urea that is 50.5% as compare to control. 

Whereas treatment where BNFF Urea Z© (Zabardast 

Urea) were applied also shows better results as 

compared to control that is 11.8% increase in grain 

weight.  

 

N, P, K in wheat grains 

Use of dry region zinc solubilizing isolates coating 

on zinc coated urea along with zabardast urea and 

zinc sulphate on wheat crop performed significant 

improvement in N, P, K contents in wheat seeds as 

compared to control where no zinc source was used 

(Figure 7 A, B and C). Use of Zn coated urea coated 

with dry region zinc solubilizing isolates enhance the 

N contents up-to 97.5%, P contents up to 23.5% and 

K contents up to 61.1% in wheat grains, over control. 

Already develop product BNFF Urea Z© (Zabardast 

Urea) also improve the N, P, K contents in wheat 

grains that shows 27.5, 5.1 and 17.7% respectively, 

over control. 

 

Table-5. Effect of different treatments of Zn coated urea on shoot and root length and their dry weight, 

spike length and SPAD value of wheat, n = 3. 

Treatment Shoot length 
Shoot Dry 

Weight 
Root Length 

Root Dry 

Weight 

Spike 

Length 

SPAD 

Value 

T0 40.7 g 7.9 e 13.1 g 4.3 e 7.4 e 32.9 g 

T1 42.3 f 8.2 e 13.4 g 4.4 e 7.5 e 33.9 f 

T2 44.7 e 8.8 d 14.0 f 4.6 d 8.2 d 35.6 e 

T3 54.3 b 10.3 b 15.4 b 5.2 b 9.3 b 38.4 b 

T4 50.3 c 9.4 c 14.7 d 4.9 c 8.7 c 36.6 d 

T5 51.7 c 10.0 b 15.0 c 5.1 b 9.1 b 37.6 c 

T6 48.3 d 9.1 d 14.3 e 4.8 cd 8.6 c 36.2 d 

T7 59.3 a 11.1 a 15.8 a 5.4 a 9.8 a 39.3 a 

LSD (p ≤ 

0.05) 
1.5801 0.3533 0.2892 0.1413 0.3638 0.5347 
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Figure-6. Effect of different dry region zinc solubilizing isolates coated on Zn coated urea on 100-grain 

weight (g) n = 3. Bars share similar letter(s) were not vary from each other at p≤0.05 statistically. 
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Figure-7. Effect of different dry region zinc solubilizing isolates coated on Zn coated urea on (A) nitrogen, 

(B) phosphorus, (C) potassium contents in grains (%) n = 3. Bars share similar letter(s) were not vary 

from each other at p≤0.05 statistically. 
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Figure-8. Effect of different dry region zinc solubilizing isolates coated on Zn coated urea on (A) Zn and 

(B) Fe contents in grains (mg kg-1) n = 3. Bars share similar letter(s) were not vary from each other at 

p≤0.05 statistically.  
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urease activity increases the amount of consumption 

of N containing fertilizers. In this way optimum 

amount of N becomes available for plants (Nosheen 

and Bano, 2014). Like our research, Mumtaz et al. 

(2017) described that production of siderophores 

capability in all identified Bacillus sp. isolates. 

Siderophores production is also an important process 

which plays role in the solubilization of Zn (Ajmal et 

al., 2021). Positive findings were shown from 

siderophore producing strain AZ6 Bacillus sp. 

documented by Hussain et al. (2015). It was noted 

that almost all rhizospheric isolates contain the 

capability for ACC-deaminase ability as evidence 

from the findings of ACC metabolism activity. When 

the strains were growing on substrate-ACC, all 

isolates perform growth but the cell density that 

examined was variable. These isolates possess a 

difference in the effectiveness to consume ACC as a 

sole source of nitrogen. As related to previous 

findings, the variation in the rate of utilization of 

ACC by rhizobacterial isolates have also described in 

prior research Nadeem et al. (2007) and Shaharoona 

et al. (2006) described that rhizobacterial strains 

consume ACC as a sole source of N but with 

difference in the degrees of effectiveness. Globally, 

especially in developing nations, the most common 

deficient micronutrient is Zn in human and plants 

because of crops were grown on such soils which 

have Zn deficiency (Zia et al., 2020). So, it is 

essential to solubilize the fixed or insoluble state of 

Zn because of the improvement of zinc bio-

availability. The most efficient method to solubilize 

fixed form of Zn is the synthesis of organic acids 

(Javed et al., 2018; Mumtaz et al., 2019). Inoculation 

of these bacteria into soil was done where they 

synthesis organic acids, chelating agents and decrease 

Zn deficiency in soil (Masood et al., 2022), which 

ultimately fortify cereal gains, consumed as food 

(Krithika and Balachandar, 2016).     

To solubilize the insoluble or fixed complexes of 

metal by organic acids production plays significant 

role in soil nutrient cycling (Rashid et al., 2016). 

Different researcher has examined that bacteria 

which solubilize Zn also synthesis different kinds of 

organic acids like gluconic acid, lactic acid and 

oxalic acid and ultimately decrease the soil pH and 

solubilize the insoluble Zn fraction in soil (Masood et 

al., 2022). Current research findings are related to the 

results of Prathap et al. (2022) and Bhakat et al. 

(2021), who found Zn solubilization potential in 

different bacterial strains. Earlier investigations 

reported that the presence of bacterial strains 

inoculated into broth amended with Zn3(PO4)2, ZnO 

and ZnCO3 resulted in the production of organic 

acids, which perform a significant role in the 

solubilization of Zn (Yadav et al., 2020). However, 

main organic acids synthesis by mostly Zn 

solubilizing isolates is the gluconic acid which play 

role in the insoluble minerals solubilization alongside 

various other organic acids. These findings similar 

with the explanations made by different researchers 

(Yadav et al., 2022). In present work, the selected 

isolates synthesis the acetic, malic, succinic, citric, 

gibberallic, gluconic and oxalic acid. Also, Javed et 

al. (2018) described that solubilization of Zn by 

rhizobacterial strains H-103, H-112 and H-84, 

synthesis the malic acid (up to 15.82, 8.18 and 8.92 

μg mL-1 respectively), oxaloacetic acid (up to 2.49, 

11.82 and 3.18 μg/mL respectively) and tartaric acid 

(up to 146.25, 90.78 and 147.05 μg mL-1 

respectively). Zaheer et al. (2019) observe the 

synthesis of acetic acid, oxalic acid, malic acid, 

gluconic acid, citric acid, succinic acid and lactic acid 

in bacterial metabolites. Mumtaz et al. (2019) 

describes the synthesis of isobutyric acid, acetic acid, 

succinic acid, formic acid, isovaleric acid, citric acid 

lactic acid by Bacillus subtilis ZM63, Bacillus 

cereus, Bacillus sp. ZM20 in ZnO amended and 

control culture filtrate.  

Pre-isolated dry region strain was used to 

characterize the plant growth promoting attributes 

and then coating on zinc coated urea fertilizer. 

Generally, root associated multifunction plant 

symbionts are bacilli commonly exist in rhizospheric 

soil (Singh et al., 2016, 2021a). They have enormous 

ability to colonize plant roots, host nourishment, and 

plant protection from abiotic and biotic stress 

conditions (Yadav et al., 2022; Singh et al., 2016, 

2021a, b). The improved product of urea coated with 

Zn was applied to check the zinc temporal release 

and urease activity in the soil at growth room trial. It 

was observed that by the use of improved product of 

zinc coated urea, availability of Zn improved 

significantly (2.03 mg kg-1) over control where no 

zinc was used and recommended dose of Zn at 75th 

day of study. In soil, bio-activated zinc-coated urea 

releases slow and gradual zinc, for bio-activation of 

zinc (ZnO) use of organic material for zinc 

solubilizing bacteria acted like carrier material and 

chelation compounds for Zn (Shakeel et al., 2015). 

The combined use of PGPBs and Zn is the most 

efficient, easily adaptable and sustainable strategies 
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that can successfully decrease human and plant Zn 

deficiency by increasing nutrition and wheat 

productivity (Jalal et al., 2022; Jalal et al., 2020; Jalal 

et al., 2023). Dry region zinc solubilizing isolates 

have a great impact on the growth of wheat, 

physiology and yield under the natural environment. 

In this research work, a significant increase in wheat 

growth and development was seen as compared to 

control. Gandhi et al. (2023) revealed that bacterial 

inoculation in wheat seedlings increase the root 

length by 16-40%. Growth and yield improvement in 

wheat crop is due to diverse plant growth improving 

characters of Zn solubilizing isolates of dry region. 

Because growth of plant needs Zn, and when it exists 

in both higher and lower concentration, it can reduce 

the growth of plant due to toxicity and deficiency, 

respectively (Natasha et al., 2022). The research 

conducted by Eshaghi et al. (2019) and Zaheer et al. 

(2019) also documented the positive impact on plant 

development, growth and yield from both individual 

and co-inoculate the Zn solubilizing isolates. In the 

present study, coating of dry region zinc solubilizing 

isolates on zinc coated urea significantly improves 

the root length, plant height, root and shoot dry 

biomass of wheat over control. The results of present 

research work were related with Ahmad et al. (2019) 

who observed that inoculation of Zn solubilizing 

bacteria, Bacillus subtilis strain ZM63 and Bacillus 

aryabhattai strain S10 led to substantial 

improvements in root length, shoot length, shoot dry 

biomass and root dry biomass in maize crop. 

Additionally, Eshaghi et al. (2019) found the 

Pseudomonas japonica isolate F37 and F21 a led to 

notable improvements in maize shoot length, as well 

as dry and fresh weight, when compared to the 

control. The PGPR application in the wire-house 

study significantly enhanced growth and 

development of plant (Yadav et al., 2022; Singh et 

al., 2021b). These bacterial inoculants synthesis 

various growth hormones (Khan et al., 2020) and 

increase chlorophyll content (Mathivanan et al., 

2017), initiation of physiological activities (Singh et 

al., 2021a,b; Meena et al., 2020), solubilization and 

mineralization of mineral elements (Kumari et al., 

2016). 

The present results confirm that application of dry 

region Zn solubilizing isolates improve the wheat 

productivity or yield because of these PGPBs play 

role in root system development and host plants 

biomass that act like an entrance for better absorption 

of nutrient for better performance of plant and higher 

production (Moretti et al., 2020). Earlier, the 

combination of Bacillus sp. inoculation with ZnO has 

been regarded as an efficient strategy to enhance 

various biochemical and physiological characteristics 

of maize, thereby boosting growth and yield of grains 

with elevated nutritional quality in field trials (Jalal et 

al., 2023). The simultaneous use of PGPBs and Zn 

enhanced Zn use effectiveness in tropical soils, 

leading to increased plant growth and yield in the 

wheat-maize cropping areas (Galindo et al., 2021). 

Earlier studies have indicated that the combine 

application of nano-Zn and PGPBs can effectively 

trigger the plant defense system by amplifying 

primary photosystems and metabolites, potentially 

resulting in increased plant growth and grains 

production (Tanveer et al., 2022). 

The current experiment confirmed that Zn coated 

fertilizer coated with dry region zinc solubilizing 

isolates significantly enhance the N, P, K, Fe and Zn 

contents in wheat grains under pot conditions. This 

could be attributed to the PGPBs involvement in 

diverse soils and several mechanisms, including the 

synthesis of enzymes and phytohormones, biological 

nitrogen fixation and carboxylation, these 

mechanisms could aid in solubilization and 

accessibility of plants nutrients, facilitating enhanced 

absorption (Yasmin et al., 2022; Rehman et al., 

2021). Particularly, studies have indicated that the 

inoculation of Pseudomonas sp. has the potential to 

enhance root architecture, proliferation and 

branching, this, in turn, can benefit host plant by 

enhancing their bio-chemical characteristics and 

increasing bioavailability of nutrient, thereby 

promoting plant health and resilience to adverse 

environmental situations (Yasmin et al., 2022; Abadi 

et al., 2021). Earlier research supports our findings, 

which demonstrating that inoculation with P. 

fluorescens, B. subtilis and A. brasilense can enhance 

nutrient absorption and promote the growth of 

sugarcane and various other cereal crops (Rosa et al., 

2022; Galindo et al., 2022). 
 
Conclusion 
 
Coating of zinc solubilizing isolates of dry region on 

Zn coated urea is an effective approach for the 

biofortification of Zn and also minimizes the urea 

losses. Further this product was used for the 

biofortification of Zn in cereals and also used for 

plant growth improvement in dry areas. Because the 

dry region Zn solubilizing isolates have the capability 



Hammad Anwar et al. 

                                                                17/21  Asian J Agric & Biol. 2025(1). 

to solubilize Zn in dry regions, due to heigh 

temperature, nutrients are not available for plants and 

urea volatilization process is also common. However, 

the results depicted that the use of dry region coated 

urea perform best to enhance Zn biofortification as 

compared to control (normal urea), but the results are 

at par with Engro Zabardast Urea. So, it is concluded 

that this product (consortium coated on Zn coated 

urea) has the ability to increase the biofortification of 

zinc in dry areas and further this product application 

is recommended in field conditions to improve the 

quality of food crops. 
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