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Abstract 
Nanoparticles are used extensively in various industries, such as agriculture, food 

packaging, medical diagnostics and electronics. However, their increasing usage raises 

concerns regarding potential health hazards and environmental risks. This study examined 

the impact of intra-peritoneal injections of magnesium oxide (MgO) nanoparticles on the 

brain, testis, and muscles of male albino rats. Mature male rats (n=20) after acclimatization 

were randomly divided into four groups (G0, G1, G2, G3). The rats in the treated groups (G1-

G3) were given MgO NPs @ 25 mg/kg, 50 mg/kg and 75 mg/kg respectively for ten 

consecutive days. G0 rats served as untreated control group. Results indicated that MgO 

NPs induced clinical alterations in exposed rats. The exposed organs including brain, and 

testis gained more weight and their stress parameters [reactive oxygen species (ROS) and 

thiobarbituric acid reactive substances (TBARS)] increased significantly in a dose 

dependent manner. Antioxidant enzymes including catalase (CAT), peroxidase (POD), 

reduced glutathione (GSH) and superoxide dismutase (SOD) reduced significantly in 

studied organs as compared to control ones. The treated rats have shown atrophy of 

neurons, microgliosis, cytoplasmic vacuolization, and congestion. Changes in the testis 

include inflammation, sloughing of cells, damaged spermatogonia, necrosis of spermatids, 

spermatogonia and arrest of spermatogenesis process. Conclusively, it is suggested that 

persistent application of nanomaterials at environmentally relevant concentrations may 

induce adverse toxicological effects in targeted and non-targeted exposed animals. 
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Introduction 
 

Nanotechnology has fastened the pace of 

advancements in all fields of science and technology 

(ALRashdi et al., 2023; Elbehary et al., 2023; 

Mansoor et al., 2023). This has led to the extensive 

use of nanomaterials including several metallic 

oxides like MgO, ZnO, NiO and TiO2 (Shahid et al., 

2023; Altaf et al., 2024; Öziç et al., 2024). 

Nanomaterials (NMs) have demonstrated significant 

advantages and technological benefits in the fields of 

biomedical sciences, agriculture and environmental 

sector, engineering, food and cosmetics (Mansour et 

al., 2023). However, their increasing production and 

usage multiply the chances of their release into the 

surrounding environment, making human exposure to 

NMs inevitable (Anjum et al., 2023; Aslam et al., 

2023). This exposure over an extended period may 

affect the living organisms inhabiting the ecosystem 

(Azam et al., 2022; Krishnaveni et al., 2023).  

The MgO NPs owing to their unique 

physicochemical characteristics have garnered 

significant attention in various fields, including 

medicine, electronics, and environmental science. 

They are used extensively for their antibacterial, 

anticancer activities, and drug delivery capability 

(Nejati et al., 2022; Mwafy et al., 2023). MgO 

nanoparticles have been studied for their potential 

role in precise drug delivery for cancer therapy (Di et 

al., 2012; Iqbal et al., 2024). They can be filled with 

anti-cancer medications and directed toward specific 

tumor locations, thereby overcoming generalized side 

effects and increasing their effectiveness (Danhier et 

al., 2010). Magnesium oxide nanoparticles possess 

unique magnetic and optical properties under which 

the image quality can be enhanced to a greater extent 

(Ahmad et al., 2020). 

MgO NPs are also found to regulate the inflammatory 

response in several conditions including arthritis, 

inflammatory bowel disease and other important 

diseases (Fahmy et al., 2022). The potential 

applications and beneficial aspects of these 

nanoparticles in predominantly all fields of science 

have overlooked adverse effects that these NPs can 

impose to public health and environment. This 

research examined the impact of MgO NPs varying 

doses on the oxidative stress indicators and antioxidant 

enzyme levels in the rat model. Studying these 

potential risks to biological systems provided crucial 

information that will be helpful in mitigating hazards 

linked with NPs usage in several industries. Moreover, 

safe dosage levels can also be assessed based on these 

experiments in addition to their toxicological effects 

profiling. In the case of MgO NPs, there is not much 

data available revealing their hazards at different 

dosage levels and describing their underlying 

mechanisms (Noori and Kareem, 2019; El-Dawy et al., 

2023). Oxidative stress leads to an imbalance between 

the generation of reactive oxygen species (ROS) and 

the body’s capability to neutralize these harmful by-

products and is also a critical parameter in studying 

nanoparticle-induced toxicity. Excessive generation of 

ROS can lead to damaging cellular components 

(lipids, proteins, and DNA), and cause various 

pathological conditions (Boğa et al., 2024).  

Through a series of biochemical markers and 

histopathological indicators, this study seeks to 

elucidate the correlation between MgO nanoparticle 

exposure and their neurological, muscular and 

testicular toxicities shown via oxidative damage. By 

investigating the extent of toxicity and the 

mechanisms driving oxidative stress, the study 

provides valuable insights into the potential health 

risks of MgO nanoparticles, paving the way for safer 

application and regulation in various industries. 

 

Material and Methods 
 

Nanoparticles, albino rats and experimental design 

MgO-NPs were obtained from the Institute of Physics 

of the Islamia University of Bahawalpur, Pakistan. 

All the chemicals and different reagents used during 

the current experimental trial were of analytical 

grade. Twenty mature male Rattus norvegicus albinos 

weighing between 140 and 160 gm were acquired 

from the animal house of the Islamia University of 

Bahawalpur. All the rats were free from any type of 

illness and were in good health condition. Fifteen 

days before the start of the trial, the rats were shifted 

to laboratory for acclimatization. Standard diet and 

clean fresh water were provided ad-libitum to the rats 

daily for the entire trial period. A 12-hour light/dark 

cycle was followed and the humidity (65±5%) and 

the temperature 24±1
°
C were kept. The rats were 

handled throughout the experiment following the 

guidelines on the care and use of laboratory animals. 

 

Groups and doses 

Rats were randomly grouped into four groups (G0, 

G1, G2, and G3) and kept separately in wire cages 
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throughout the experiment. Group G0 served as the 

control. In Group G1, rats were injected with MgO 

NPs at a dosage of 25 mg/kg/day, while group G2 

received 50 mg/kg/day, and group G3 was given 75 

mg/kg/day intraperitoneally for 10 days. All the rats 

were observed daily for any abnormalities. 

 

Tissue homogenates, oxidative stress and 

antioxidant enzymes 

The collected organs/tissues (brain, muscle, and 

testis) were separately triturated in petri dishes and 

homogenized using chilled double distilled water. 

The homogenates were then centrifuged at 3000 rpm 

for 10 minutes. The sediment obtained after 

centrifugation was collected and stored at -20°C for 

further analysis. Several parameters related to 

oxidative stress and antioxidant status were 

examined, including reactive oxygen species (ROS) 

(Hayashi et al., 2007), reduced glutathione (GSH) 

(Jollow et al., 1974; Raza et al., 2022), Thiobarbituric 

acid reactive substances (TBARS) (Grewal et al., 

2005), and various antioxidants such as catalase 

(CAT), superoxide dismutase (SOD) (Akram et al., 

2021; Kakkar et al., 1984), and peroxidase (POD) 

(Misra and Fridovich, 1977). Absorbance readings 

for POD, SOD, and CAT were taken at wavelengths 

of 470 nm, 560 nm, and 240 nm, respectively, while 

ROS and TBARS were measured at wavelengths of 

505 nm and 532 nm. A UV-Vis spectrophotometer 

was used for these measurements.  

 

Histopathology analysis  

10-day-old rats in all the groups were humanely 

euthanized and dissected. Various tissues including 

the brain, muscle and testis were collected at the 

necropsy. The absolute organ weight of each organ 

was recorded. The relative weight of different organs 

was calculated as Organ-Weight-to-Body-Weight 

Ratios. Each collected organ was preserved 

separately in 10% formaldehyde solution for 

histopathological lesions (Shaker et al., 2023). 

Approximately, 4-6 μm thick sections were taken 

using the Leica rotary microtome from each organ. 

Following conventional histological protocols, the 

collected sections were then coated in paraffin wax, 

processed and stained with hematoxylin and eosin 

(H&E). A light microscope was used to observe 

deleterious effects of nanoparticles on various organs. 

 

Statistical analysis 

Using the IBM statistical program package, the 

ANOVA test was used for statistical evaluation of 

data collected from oxidative and antioxidant 

enzymes (SPSS). Rats injected with NPs and those 

not, were compared for the standard deviations of all 

investigated parameters, including antioxidant and 

oxidative enzymes, using Tukey's test. P≤0.05 was 

set as a reliable threshold. 

 

Results  
 
Behavioral changes  

MgO NP treated rats indicated behavioral and 

neurological changes like depression, weakness, and 

weight loss. 

 

Relative weight of visceral organs 

The relative weight of various organs of rats exposed 

to different concentrations of MgO NPs was 

measured. After two weeks of intraperitoneal 

injection with various doses of MgO NPs, a 

substantial increase in relative weight of the brain 

and testes was recorded. The values showed a 

considerable increase in the relative weight of the 

brain and testis indicating adverse effects of MgO 

NPs which appeared to be dose-dependent (Fig. 1). 
 

 
Figure-1. Photograph showing comparison of 

relative weight of different organs of rats exposed 

to varying doses of MgO NPs 
 

Oxidative stress and anti-oxidative parameters 

Brain 

In brain, ROS and TBRAS indicated abnormally 

high values in rats treated with higher doses of MgO 

NPs (50 mg/kg/day and 75 mg/kg/day). The quantity 

of antioxidant enzymes reduced significantly in 

albino rats at higher doses of NPs indicating stress as 

compared to the control group (Figure 2). 
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Figure-2. Photograph showing comparison of 

oxidative stress and antioxidant profile of brain of 

rats exposed to varying doses of MgO NPs 
 
Testis 

In case of testis, the oxidative stress biomarkers were 

significantly increased in rats reared in groups G2 

and G3. The contents of CAT and POD non-

significantly changed in treated group G1 as 

compared to the control group. These enzymes, 

however, present significant changes in G2 and G3 

treated groups. In testis, the contents of SOD 

significantly reduced in treated groups (G1, G2, and 

G3) as compared to the control group (Figure 3). 

 

 
Figure-3. Photograph showing comparison of 

oxidative stress and antioxidant profile of testis of 

rats exposed to varying doses of MgO NPs 

 

Histopathology of different visceral organs 

Testis 

The MgO NP treated groups have shown adverse 

changes including inflammation, sloughing of cells, 

damaged spermatogonia, increase in cell debris in 

seminiferous tubules, hypospermatogenesis, necrosis 

of spermatids, spermatogonia and arrest of 

spermatogenesis process (Fig 4). The severity of 

various histopathological alterations in the testis of 

MgO NPs exposed and unexposed groups of male 

albino rats have been tabulated against varying 

doses. (Table 1). 

 

Table-1. Histopathological alterations in the testis of MgO NPs exposed and unexposed male albino rats  
Parameters Groups/Treatments 

Histopathological lesions 
G0 

(Control) 

G1 

(25mg/kg/day) 

G2 

(50mg/kg/day) 

G3 

(75mg/kg/day) 

Inflammatory processes - ++ ++ ++ 

vacuolation of epithelia of seminiferous tubules - + ++ +++ 

Reduction in diameter of seminiferous tubules - ++ ++ +++ 

Partial germ cell arrest - + ++ +++ 

Decrease frequency of normal seminiferous tubules - + ++ +++ 

Degeneration and damage of spermatogonia - + ++ ++ 

Hypospermatogenesis - + ++ +++ 

Sloughed cells - + ++ +++ 

Increase cell debris in lumen of seminiferous tubules - + ++ +++ 

Disorganization of spermatogonia and Sertoli cells - + ++ +++ 

Necrosis of spermatogonia and Sertoli cells - + ++ +++ 

Arrest of process of spermatogenesis - ++ ++ +++ 

Increased germ cell depletion in seminiferous epithelium - ++ ++ +++ 

Necrosis of spermatids - + +++ +++ 

Normal (-), Mild (+), Moderate (++), Severe (+++), Very severe (++++)
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Figure-4.  Photomicrograph of testes of albino 

rats treated with MgO NPs (75mg/kg body mass) 

showing various pathological ailments like arrest 

of spermatogenesis, degeneration of seminiferous 

tubules and necrosis of epithelium of seminiferous 

tubules. H&E Stain;400X 
 
Brain 

Microscopic observation of the brain of treated rats 

exhibited different ailments like necrosis of neurons, 

atrophy of neurons, microgliosis, cytoplasmic 

vacuolization, and congestion post-treatment (Fig 5). 

The severity of various histopathological alterations 

in the brain of MgO NPs exposed and unexposed 

male albino rats has been shown (Table 2). 

 

 

Muscles  

The histopathological alterations observed in the 

muscles of rats were atrophy and necrosis of 

myocytes, edema, inflammatory cell infiltrate, and 

intrafiber necrosis at low dosage levels. Higher 

dosage leads to severe to very severe changes 

especially inflammatory cell infiltration, and 

degeneration of muscle fibers (Fig 6; Table 3). 

 

 
Figure-5. Photomicrograph of brain of albino rats 

treated with MgO NPs (75mg/kg body mass) 

showing various pathological ailments like 

eccentric neurons, microgliosis, degeneration of 

neurons, atrophy of neuron and necrosis of 

neuron. H&E Stain;400X 

 

Table-2. Histopathological alterations in the brain of MgO NPs exposed and unexposed groups male 

albino rats  

Parameters Groups/Treatments 

Histopathological lesions 
G0 

(Control) 

G1 

(25mg/kg/day) 

G2 

(50mg/kg/day) 

G3 

(75mg/kg/day) 

Eccentric nuclei of neuron - + ++ +++ 

Hypertrophy of cytoplasm of neurons - + +++ +++ 

Edema - + ++ ++ 

Microgliosis - + ++ +++ 

Atrophy of neuron - + ++ +++ 

Necrosis of neuron - + ++ ++ 

Inflammatory reactions - + ++ ++ 

Neuronal degeneration - + +++ +++ 

Vacuolation of neuron - + ++ +++ 

Normal (-), Mild (+), Moderate (++), Severe (+++), Very severe (++++) 



Gulnaz Afzal et al. 

                                                                6/12  Asian J Agric & Biol. 2024(4). 

Table-3. Severity of various histopathological alterations in muscle of MgO NPs exposed and unexposed 

groups male albino rats. 

Parameters 

Groups/Treatments 

G0 

(Control) 

G1 

(25mg/kg/day) 

G2 

(50mg/kg/day) 

G3 

(75mg/kg/day) 

Atrophy of myocytes - ++ +++ +++ 

Necrosis of myocytes - + ++ +++ 

Inflammatory cell infiltration - +++ ++++ ++++ 

Intrafiber necrosis - + ++ +++ 

Muscle mass loss - + ++ +++ 

Edema - + ++ +++ 

Degeneration of muscle fibers - ++ +++ ++++ 

Normal (-), Mild (+), Moderate (++), Severe (+++), Very severe (++++) 

 

 
Figure-6: Photomicrograph of muscles of albino 

rats treated with MgO NPs (75mg/kg body mass) 

showing various pathological ailments like 

necrosis of myocytes, atrophy of myocytes, intra-

fiber necrosis, degeneration of neurons, atrophy of 

neuron and necrosis of neuron. H&E Stain;400X 
 

Discussion 
 
Different reports have indicated that estimation of 

hemato-biochemical and histopathological (Hussain 

et al., 2017; Hussain et al., 2019; Hussain et al., 

2020) and oxidative stress biomarkers play a pivotal 

role in monitoring/screening of toxic effects of 

various compounds. MgO NPs are important small 

biomaterials having diversified usage in medicinal, 

microbiological, environmental, agriculture, energy 

production and public health management (Sisubalan 

et al., 2024). Their continuous and long term 

exposure at higher concentrations is however 

associated with health risks (Rempel et al., 2020). 

There is not much data available on the underlying 

mechanisms of the toxicological effects of these NPs 

on living organisms. This study aimed at exposing 

laboratory rats to three different doses of MgO NPs 

and examining their toxicological effects. The results 

have shown a significant increase in reactive oxygen 

species and Thiobarbituric acid reactive substances 

(TBARS) levels in various visceral organs in a dose-

dependent manner. These elevated levels can be 

attributable to increased ROS production and lipid 

peroxidation along with glutathione depletion, which 

leads to tissue damage in the visceral organs 

(Mangalampalli et al., 2018).  This study 

demonstrated that the exposure of rats to MgO NPs 

can lead to the induction of oxidative stress in 

multiple visceral organs/tissues like the brain, testis, 

muscles in a dose-dependent manner. Higher ROS 

and TBARS content in MgO-exposed rats can lead to 

the generation of free radicals. It is noted that these 

NPs induce oxidative stress via interaction with 

polyunsaturated fatty acids in the cell membrane of 

various visceral organs including the brain, testis and 

muscles (Sudhabose et al., 2024). The physiological 

abnormalities can lead to inflammation of various 

organs in the MgO NP exposed rats which might be 

due to the reduction in total protein content in 

different tissues.  

There are few reports available regarding the 

toxicological effects of MgO NPs in terms of 

oxidative stress and genotoxicity in the isolated cells 

of various visceral organs (Kazmi et al., 2023; 

Sudhabose et al., 2023). Exposure to different 

concentrations of metallic oxide nanoparticles leads 

to the generation of ROS depending upon dosage and 
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duration of exposure resulting in protein denaturation 

and lipid peroxidation thereby inducing genotoxicity 

(Feng et al., 2000).  In addition these MgO NPs also 

induce toxicity via the liberation of Mg ions like that 

of ZnO ions (Hajibeygi et al., 2021). The genotoxic 

effects might be due to the interaction of these 

metallic oxide NPs with the sulfur containing 

proteins resulting in free radical formation and 

blockage of respiratory enzymes thereby leading to 

cell death (Feng et al., 2000). The dosage and length 

of exposure to NPs is often related to oxidative stress 

if exposure continues (Ali et al., 2024). Moreover it 

has been found that direct nanoparticle exposure 

leads to more DNA damage in metabolically active 

organs and tissues (Dong et al., 2022; Sibiya et al., 

2022). Observations regarding genomic mutations 

and chromosomal abnormalities have led to the 

mutagenic/carcinogenic nature of these MgO NPs 

(El-Hamaky et al., 2023; Hamida et al., 2020). MgO 

NPs induce DNA  damage via oxidative stress, direct 

binding of DNA, and inhibition of its repair 

mechanism (Hamida et al., 2020). ROS cause 

oxidation of nucleotide bases and break in the strands 

which can lead to conformational changes and strand 

crosslinks (Khan et al., 2022; Sial et al., 2023). These 

changes as well as suppression of DNA repair 

mechanism might induce genotoxicity (Li et al., 

2018). Such genotoxic effects have been reported for 

other nanoparticles as well (Attia et al., 2018; 

Tulinska et al., 2022). Moreover, increased DNA 

damage in brain, testis and muscles and other organs 

are indications of systemic genotoxicity. Chronic 

exposure to high doses of MgO NPs have similar 

genotoxic effects as reported for other metallic oxide 

nanoparticles as well (Cavallo et al., 2023; Gurram et 

al., 2023). 

The antioxidant enzyme including CAT, SOD, GSH 

and POD values reduce in the rats exposed to high 

dose of MgO nanoparticles. This reduction in values 

in exposed organs and tissues might be correlated 

with inflammatory response. The NPs might trigger 

inflammation and oxidative stress which cause 

damage to DNA in the tissues and organs of the 

affected rats (Srisuvetha et al., 2020). This oxidative 

injury can also trigger apoptosis and necrosis thereby 

leading to loss of functioning and cell death (Ali et 

al., 2024; Samim et al., 2023). The oxidative injury 

noticed in this study can be due to the generation of 

reactive oxygen species, oxidative signaling cascade 

activation and antioxidant depletion (Balkrishna et 

al., 2021; Venkatappa et al., 2022). ROS interact 

with macromolecules (proteins, lipids, DNA) and 

causes oxidative changes. Increased TBARS due to 

MgO NPs can result in compromising the integrity of 

cell membrane. Significant decline in GSH in high 

NP dosage exposed rats further elaborated the 

impairment of antioxidant defenses against ROS 

(Arslanbaş and Coşar, 2019; Mazaheri et al., 2019). 

Studies carried out earlier for examining the 

nanotoxicity of metallic oxide nanoparticles also 

reported decline in antioxidant enzymes in different 

experimental models (Aziz and Abdullah, 2023; 

García-Medina et al., 2022; Ghafarifarsani et al., 

2023; Naguib et al., 2023). The oxidative stress 

induced by NPs can be more pronounced and can 

inhibit the antioxidant enzymes functioning as a 

secondary response (Sanati et al., 2022). CAT and 

SOD detoxifies H2O2  and superoxide radicals and 

POD clears lipid peroxides (Kumar et al., 2023). 

Their reduction impairs the activity to neutralize 

reactive oxygen species and leads to oxidative 

damage. The ROS dysregulation in response to 

decline in antioxidant enzymes have consequences 

leading to biomolecular oxidation and cell injury 

(Ghorbani et al., 2023). It has also been postulated 

that interaction of Mg2+ ions intracellularly could 

result in lowering the values of proteins and different 

antioxidant enzymes as seen in various organs and 

tissues (Dolmetsch et al., 1998). These Mg2+ ions 

activate transcription elements (NF-kB) that result in 

free radicals formation leading to changes in the 

homeostasis of cells which enhance Mg2+ influx 

during stimulation of endoplasmic reticulum and 

production of superoxide anions responsible for 

mitochondrial perturbation and cell damage (Xia et 

al., 2008). 
 

Conclusion 
 
This study demonstrates the systemic toxicity in rats 

exposed to MgO nanotoxicity manifested through 

oxidative stress, the decline in antioxidant activity, 

genotoxicity and clastogenic effects on various 

organs and tissues including the brain, testis and 

muscles. These NPs also exhibited elevated ROS 

levels, lipid peroxidation, DNA damage, and 

reduction in antioxidant enzymes and glutathione 

levels. MgO NPs therefore directly or indirectly 

affect the living cells suggesting their adverse health 

effects in vivo in rats in a time and dose dependent 

response. 
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