AJAB

Identification of key volatile flavor compounds in cigar filler tobacco leaves via GC-IMS

Jian Wang¹, Yong Pan¹, Liping Liu¹, Chuang Wu¹, Youzhi Shi^{1*}, Xiaolong Yuan^{2*} ¹China Tobacco Hubei Industry Co., Ltd., Wuhan 443100, China ²Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Oingdao 266100, China

Received: February 03, 2023 Accepted: May 13, 2023 Published Online: June 15, 2023

Abstract

Cigar filler leaves are the most important component of cigar because they determine its quality. Therefore, the volatile components of eight cigar filler tobacco leaves were studied and compared using gas chromatography-ion mobility spectrometry (GC-IMS). In this study, 84 compounds with high levels of nitrogenous and ketone compounds were identified. Based on the chemometric principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), the eight cigar samples were significantly distinguished. Meanwhile, we performed a discriminant analysis of volatile organic compounds in the eight cigar samples based on the variable importance in the projection (VIP) scores of the PLS-DA model, and revealed significant differences in the volatile compounds between the different varieties. 11 volatile compounds (VIP > 1) were screened and compared, among which triamine, acetic acid, acetone, and cyclopentanone were the main differential compounds/flavor substances. This study showed that GC-IMS can rapidly identify and compare the volatile compounds of various cigars, providing a theoretical basis for studying the differences in the volatile aroma of cigars, and laying a foundation for the breeding selection of subsequent varieties.

Keywords: Cigar filler tobacco leaves, Volatile flavor compounds; Gas chromatography–ion mobility spectrometry, Principal component analysis, Partial least squares-discriminant analysis

How to cite this:

**Corresponding author email:* sx_shiyz@sx.hbtobacco.cn Wang J, Pan Y, Liu L, Wu C, Shi Y and Yuan X. Identification of key volatile flavor compounds in cigar filler tobacco leaves via GC-IMS. Asian J. Agric. Biol. 2023(3). 2023013. DOI: <u>https://doi.org/10.35495/ajab.2023.013</u>

This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 License. (<u>https://creativecommons.org/licenses/by/3.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Cigar tobacco is an important non-food agricultural crop consumed worldwide because of its unique aroma and taste (Allem et al., 2019; Wen and Huang, 2021). Cigar filler tobacco leaves (CFTLs) are an essential component of cigar tobacco, accounting for 70–85% of the weight of the cigar and determining its smoking quality, commodity value, and industrial prospects (Zheng et al., 2022). Generally, CFTLs must undergo additional fermentation before being used in cigars, which can produce several volatile flavor compounds (VFCs) with characteristic flavors (Cornacchione et al., 2022; Yang et al., 2022). Previous research has shown that VFCs in cigar leaves are complex and diverse and include terpenes, aldehydes, alcohols,

ketones, esters, and sulfur-containing substances (Kaneko and Harada, 1972). With the development of chromatography-mass spectrometry, more than 100 characteristic flavors have been detected in cigars, including sulfides, terpenes, and aldehydes (Vu et al., 2021; Zhang et al., 2021a). In China, the raw materials of the cigar are mainly imported from Cuba, Dominica, Brazil, and Indonesia (Ying et al., 2018;). The cultivation of CFTLs in China is still in its infancy, therefore the characteristic VFCs of Chinese CFTLs are still unclear (Gao et al., 2015; Ying et al., 2018; Wang et al., 2022). Due to the diversified introduction channels and scattered preservation, various reasons such as repeated naming lead to the unclear genetic relationship between cigar germplasm in China, which brings inconvenience to the quality identification and the promotion and application of superior lines of cigar. Therefore, it is of great significance to study the key VFCs in cigar tobacco leaves that cultivated in China for the understanding and preservation of domestic cigar tobacco germplasm resources. The current research is mainly focused on volatile compounds in cigar, including the extraction, spectrometric separation. mass analysis of characteristic flavor compounds, and exploration of principal flavor components of raw cigar materials that cultured in China. However, there are no systematically reports on the identification and differential analysis of key VFCs in different strains of cigar raw materials in China.

Gas chromatography (GC)-mass spectrometry, GColfactometry, and electronic noses are usually employed to identify volatile aroma compounds in tobacco (Rambla-Alegre et al., 2014; Liu et al., 2018; Qi et al., 2022; Zheng et al., 2022). Among these, gas chromatography-ion mobility spectrometry (GC-IMS), which is more sensitive than previous technologies, has emerged. GC-IMS combines the high separation ability of GC with the high sensitivity of IMS and does not require sample pretreatment (Li et al., 2019; Wang et al., 2020; Gu et al., 2021; Li et al., 2022). Studies on drug detection (Li et al., 2022), environmental quality monitoring (Zheng et al., 2022), and food flavor analysis (Wang et al., 2020) demonstrated that trace amounts of VFCs can be rapidly detected through processing.

In our study, GC–IMS was used to detect and identify VFCs in the tobacco leaf raw materials of eight main cigar varieties. Principal component analysis (PCA) was used to analyze the differences in flavor compounds among the different cigar samples. The key VFCs in cigar tobacco raw materials were studied using the variable importance in the projection (VIP) analysis method (Mao et al., 2018). Finally, fingerprints of the volatile flavors of each cigar material were constructed to identify the differences in the volatile compounds among the different materials. The rapid identification of cigar varieties and the efficient differentiation of the flavors of cigar tobacco raw materials will provide a theoretical basis for the qualitative analysis of cigar tobacco raw materials and the research and development of high-quality domestic cigar products.

Material and Methods

Samples and CFTLs preparation

Eight cigar filler tobacco leaves (CFTLs) samples of different varieties were planted and collected from the Chinese Tobacco Hubei Industry Co., Ltd., Wuhan City, Hubei Province (111.34555E, 30.78724N) in 2021. For each sample, 2 kg of the material was collected and dried according to the technical regulations for air-drying high-quality cigars. After drying, the CFTLs were placed in a constant-temperature-and-humidity box at 45 °C and 80% humidity for initial fermentation. After fermentation, the CFTLs were removed and immersed in liquid nitrogen for rapid pre-cooling, stored in a Ziplock bag at -80 °C until further use.

GC-IMS analysis

For the analysis, 1.0 g of each CFTLs was added to a 20 mL headspace bottle sealed and incubated under heating at 80 °C for 20 min at 500 rpm. After cooling to 25°C, the material was injected into a GC injector (Agilent Technologies, Palo Alto, CA, USA) equipped with an MXT-WAX column (30 m \times 0.53 mm, film thickness: 1 µm) at a column temperature of 60 °C. Highpurity nitrogen (purity > 99.999%) was used as carrier gas. The carrier gas flow rate program was as follows: 2.0 mL/min for 10 min, linear increase to 10.0 mL/min for 10-20 min, and linear increase to 100.0 mL/min for 20-40 min. The flow was then stopped for a total run time of 40 min. The IMS conditions were set as follows: the length of the drift tube was 98 mm, the operating temperature was 60 °C, and the nitrogen concentration was 150 mL/min. The linear voltage inside the tube was 500 V/cm, and the average number of spectral scans was 12. Each GC-IMS analysis was conducted in triplicate.

Qualitative and quantitative analysis of VFCs

By comparing the retention index (RI) and drift time in the GC–IMS library, the VFCs in the CFTL samples were identified. The calculation of the RI for the volatile compounds in the detected material was based on the external standard N-ketone C4–C9. VFCs in CFTLs were identified by comparing the RI to the standard drift time (the time required in milliseconds by ions to reach the collector through the drift tube) in the GC–IMS library using the GC × IMS library search software. Finally, the intensities of the volatile compounds were analyzed according to the peak volumes of the selected signal peaks.

Statistical analysis

Sample analysis was conducted using the VOCal analysis software and three plug-ins (Reporter, Gallery Plot, and Dynamic PCA) built into the device. The 2014 NIST and IMS databases built into the GC \times IMS library search software were used for the qualitative analysis of the flavor compounds. Differential maps and fingerprints of VFCs were constructed. SPSS Statistics 21 software was used for variance analysis, and the statistical significance was set at P < 0.05. Partial least squares discriminant analysis (PLS-DA) performed using the website was https://www.metaboanalyst.ca/, and Origin 8.6 was used for drawing.

Results

Analysis of VFCs in different CFTLs using GC-IMS

The GC–IMS two-dimensional top view of the volatile compounds in different CFTLs was generated using the Reporter plug-in. As shown in Figure S1, most signals appeared at retention times of 100–1000 s and drift times of 0.3–1.5 s. The compositions of VFCs in the eight CFTLs were the same; however, the VFCs contents were considerably different. In Figure S1, substances exhibiting large differences in their content are mainly concentrated in the red and yellow boxes. Spectrum discrimination showed that the VFC content in the Hainan No. 3, Chuxue No. 14, and Dexue No. 4 samples was relatively high, whereas Yongsheng No. 2, Chuxue No. 80, and Chuxue No. 81 exhibited a relatively low content.

Qualitative and quantitative analysis of VFCs in different varieties of cigar leaves

The ion migration time and RI were used to

Asian J Agric & Biol. 2023(3).

qualitatively identify VFCs in the detected samples. Totally, 111 peaks were detected in the tobacco leaf samples, and 93 compounds were identified using the NIST 2014 and IMS databases (Figure 1 and Tables S1 and S2), including 12 esters, 4 alkenes, 17 ketones, 4 acids, 20 aldehydes, 13 alcohols, 3 sulfur compounds, 10 nitrogen-containing compounds, and 10 other classes. The monomeric and dimeric forms of nine compounds (acetic acid. sanvamine. cyclopentanone, hexanal, butanol, glutaraldehyde, ethanol, butanal, and propanal) were included. Therefore, 84 compounds were totally identified in the final determination of cigar tobacco samples.

In addition, the quantitative analysis of volatile compounds in these cigars was expressed as the peak volume calculated using the IMS system (Table S1). Among which, nitrogen was the main component in the eight samples, with a content accounting for more than 66%. Chuxue No. 80 exhibited the highest nitrogen content (77.77%) and the main nitrogencontaining compounds were triimine and 2acetylpyridine. The ketone contents of the different varieties were significantly different: The highest ketone content was observed in Chuxue No. 80 (71.3%) whereas Chuxue No. 81 exhibited the lowest value (14.29%). Additionally, Chuxue No. 81 (7.49%) had the highest aldehyde content, whereas Chuxue No. 80 (5.79%) had the lowest. Dexue No. 4 exhibited the highest alcohol content (6.78%), whereas Chu Xue No. 4 (6.78 %), Chu Xue No. 80, and Chu Xue No. 14 (3.53 %) exhibited lower contents.

Figure-1. Contents of volatile components in different cigar leaves.

Fingerprint analysis of volatile components in different CFTLs

According to the volatile components in the leaves of different CFTLs, specific volatile components were analyzed in depth. The GalleryPlot plug-in was used to draw the fingerprints of VFCs in the different CFTLs (Figure 2) to visually compare and quantitatively analyze them. As shown in Figure 2, box A shows the characteristic peak area of the 20 VFCs that were detected in all the tested samples. The main compounds identified were aldehydes and ketones, including 2-hexenal, 3-methyl-2-butenal, acrolein, benzaldehyde, hexanal-D/M, methacrolein-D/M, nonanal, valeraldehyde-D/M, 2-butanone, 3-6-methyl-5-hepten-2-one. methyl-2-pentanone. acetone, cyclopentanone-D, and triimine-D/M. Box B shows that the signal intensity of Chuxue No. 81 was significantly higher than that of the other varieties, mainly including esters and alkenes such as butyl acetate, ethyl 3-methyl butyrate, ethyl butyrate, ethyl isobutyrate ester, hexyl acetate, isobutyl acetate, pentyl methyl 3-methyl butyrate, beta-pinene, limonene, and styrene. Box C indicates that the signal intensity of ketones in Chuxue No. 14 was significantly higher than that of the other varieties, including 1-hexanol, tert-butanol, cyclohexanone, diisobutyl ketone, 1-octen-3-one, 2,3-pentanedione, 4methyl-2-pentanone, 5-methyl-3-heptanone, (E)-2heptenal, 2, 6-Dimethylpyridine and benzene. Box D indicates that the signal intensities of alcohols, ketones, and nitrogen-containing substances in Dexue No. 4 were significantly higher than those of the other species, including 1-butanol, 1-penten-3-ol, 2butanol-D /M, furfuryl alcohol, hydroxyacetone, 1penten-3-one, 2,5-dimethylpyrazine, and 2-ethyl-5methylpyrazine. Box E indicates that the signal intensity of acetophenone in Yongsheng No. 2 was significantly higher than that in the other varieties. Box F indicates that the signal intensities of 2isovaleraldehyde-D, 2-methylpropanal, 2methylpyrazine, 3-methylbutanal aldehyde-M, and methyl acetate in Hainan No. 2 and Hainan No. 3 was significantly higher than those of the other varieties. Box G indicates that the signal intensity of Jianheng No. 3 was significantly higher than those of the other varieties, including n-propanol, 2-methylpropanol, cyclopentanone-M, 2-pentanone, 3-pentanone, dipropylene glycol monobutylene ether, acetaldehyde, acrylonitrile, diacetyl, ethyl acetate, ethyl lactate, 2ethylpyrazine, gamma-terpinene, hexyl isobutyrate, and thiophene. The quantitative results demonstrated the differences in the volatile compounds among the eight cultivars.

leaves;

Each row represents different varieties of cigar samples (3 parallels/sample). Each row is composed of

the signal peaks of the volatile compounds contained in the corresponding sample, and each column represents different volatile compounds. The signal peaks represent intensity of the compound. The brightness of the spot represents the concentration of the corresponding volatile compound. Here, monomers and dimers of the same compound were characterized using different columns with the same compound name. Additionally, a small number of volatile compounds were not accurately characterized and are presented in the form of Arabic numerals.

PCA plot for differentiating the volatile compounds in different varieties of cigar leaves

The Dynamic PCA plug-in was used to conduct PCA based on the content (signal peak volume) of volatile compounds in the different varieties of the detected cigar leaves. Distributions of the first and second principal components were obtained through data visualization (Figure 3). The variance contribution rates of the first two principal components were 49% and 17%. The distances between the samples within each variety were similar, showing good parallelism, and the distances between the samples of each variety were significantly separated. By combining PC1 and PC2, the eight cigar samples were divided into six groups: Hainan No. 2 and Hainan No. 3 were classified in the same group, and Chuxue No. 14 and Jianheng No. 3 were categorized in another group, indicating that they had similar volatile compound compositions. However, the other four cigar varieties were clustered into one group, and the distance between them was relatively large, indicating the composition of volatile compounds of these four varieties differed greatly from each other.

Figure-3. PCA plot for differentiating the volatile compounds of the different cigar samples.

GC–IMS analysis of VFCs in different varieties of cigar leaves

To further explore the key substances causing differences between the tobacco varieties, the VIP scores of all volatile compounds were calculated based on the PLS-DA model, and "VIP> 1" was used as the standard for screening. In this study, 11 (VIP > 1) marker volatile compounds were screened according to the VIP values (Figure 4), among which triimine-M and acetic acid of VIP > 3 were the most important differential compounds, followed by acetone and cyclopentanone-D (2 < VIP < 3), which contributed significantly to the overall difference. Additionally, hexanal, 2-isovaleraldehyde, ethyl isobutyrate, 2butanone, furfuryl alcohol, methyl 3-methyl butyric acid, amyl, and propionaldehyde (1 < VIP < 2) were important differential compounds. Chuxue No. 80 exhibited the highest triamine-M content, followed by Jianheng No. 3. The highest acetic acid content was found in Hainan No. 3, followed by Dexue No. 4. The highest acetone content was observed in Chuxue No. 81, followed by Jianheng No. 3, and Chuxue No. 80. Furthermore, the cyclopentanone contents in Chuxue No. 81 and Chuxue No. 14 were higher than those in the other varieties. The hexanal contents in Chuxue 81 and Chuxue 14 were the highest among all species. Hainan No. 2 and Hainan No. 3 exhibited a higher content of 2-isovaleraldehyde. Moreover, higher ethyl isobutyrate and furfuryl alcohol contents were observed in Chuxue 81 and Dexue 4. Additionally, the amyl methyl 3-methyl butyrate content was higher in Chuxue No. 81. Chuxue No. 81, Chuxue No. 14, and Dexue No. 4 were rich in propionaldehyde.

Figure-4. Variable importance in projection scores.

Discussion

Cigar tobacco is an important economic crop that is widely grown worldwide because of its special aroma and taste, which is made from dried and fermented cigar leaves (Allem et al., 2019). At present, most of the cultural cigar species in China are imported, leading to relatively scarce germplasm resources of cigar tobacco in China (Yang et al., 2022; Zheng et al., 2022). Therefore, the cultivation and production of cigar filler tobacco leaves in China are still in their primary stages, and more research should be conducted to explore the germplasm resource presentation, explore the quality differences among different varieties, and identify suitable varieties of cigars in China. As an important flavor substance, the volatile aroma components of cigars are complex and diverse, which determines their smoking quality, commodity value, and industrial prospects. Typically, cigar compounds can be detected using GC-MS (Zheng et al., 2022; Ng et al., 2001). In this study, we used GC-IMS to detect and analyze the key VFCs in eight major CFTLs in China. Totally, 84 volatile compounds were identified: 12 esters, 4 alkenes, 16 ketones, 3 acids, 16 aldehydes, 11 alcohols, 3 sulfurcontaining compounds, 10 nitrogen-containing compounds, and 10 other compounds. The quantitative and qualitative results showed that the CFTLs samples mainly contained nitrogen-containing VFCs, followed by ketones, aldehydes, and alcohols. Among these, aldehydes are considered to contribute more to flavor because of their high concentration, low threshold, and high volatility (Zhang et al., 2021a; Wang et al., 2022). In addition, studies have shown that aldehydes were first hydrolyzed by lipids to form free fatty acids; these saturated and unsaturated fatty acids were then thermally decomposed to form hydroperoxides under normal conditions (Kim et al., 2022). Alcohol compounds generally derive from the degradation of secondary hydroperoxides of fatty acids or the reduction of carbonyl compounds (Lawyer et al., 2019). This study revealed significant differences of VFCs between the tested CFTLs, indicating that these differences are the important factors responsible for the different flavor characteristics and sensory qualities of the cigars (Zhang et al., 2021b).

To explore the key VFCs in different CFTLs, all volatile compounds were analyzed using fingerprints, PCA, and PLS-DA. The similarities and differences in the volatile compounds among the different varieties were clarified, and the eight varieties were divided into six groups. Significant differences were observed in the structures of flavor substances. Chuxue No. 14, Jianheng No. 3, Hainan No. 2, and Hainan No. 3 exhibited similar flavor substance structures, which can provide a reference for the blending of tobacco leaves in industrial production. The contribution of all

identified volatile compounds to the structural differences in flavor compounds was studied using VIP analysis, and 11 marker compounds with important contributions to the structural differences in flavor compounds were selected. Among these, triamine-M and acetic acid were identified as the most important differential markers, followed by acetone and cyclopentanone D. Acetic acid and acetone are important and common aromatic substances in cigars and are known to impart pungent odors (Li et al., 2023). Other compounds such as hexanal, 2isovaleraldehyde, ethyl isobutyrate, and 2-butanone, which endow CFTLs with typical fruity and ethereal properties, are also important differential flavor compounds (Baker et al., 2004). Our study revealed that each cigar variety exhibits characteristic marker compounds in different contents. For example, signal intensity of esters and alkene in Chuxue No. 81 are significantly higher than that in the other varieties., and so as to the ketones in Chuxue No. 14, the alcohols in Dexue No. 4, and the acetophenone in Yongsheng No. 2, which may be the main reason for the flavor differences between the different varieties. Yu et al. (2021) used GC-MS analysis and revealed that the biomarkers of two volatile compounds screened on cigar raw materials were α -curcumene and cedrol, which differs from our results. The differences in volatile compounds among the different varieties can affect the results, whereas the detection ability of GC-IMS and GC-MS may lead to such differences. The volatile components detected by GC-IMS were mostly small molecules with high volatility and low contents, and the detection time was short. Thus, GC-IMS can rapidly identify volatile compounds in different varieties of cigar leaves, as well as the flavors of different samples (Zeki et al., 2020). However, the correlation between the flavor substances in cigar leaves, style characteristics of cigars, and the mechanism of their influence on the sensory quality of cigars among the different varieties requires further research.

Conclusion

In this study, we used GC–IMS to detect, analyze, and build the fingerprints of volatile compounds contained in eight major Chinese CFTLs. We identified and classified 84 volatile compounds, mainly composed of nitrogen, ketones, aldehydes, alcohols, and esters. The GC–IMS fingerprint of the flavor substances contained in cigar tobacco is an efficient tool for the

Asian J Agric & Biol. 2023(3).

effective identification of the different varieties of cigar tobacco. Additionally, the exploration of key differential volatile compounds can help in revealing the mechanism of flavor differences in the different cigar varieties. This study provides data support for the application of GC–IMS analysis in the rapid grading of cigar tobacco leaves as well as a theoretical basis for studying the flavor-formation mechanism of cigar tobacco leaves. The correlation between these findings via GC-IMS and via GC-MS should be further studied.

Supporting information: Figure S1. Twodimensional GC–IMS spectra of the different cigar tobacco leaves. The ordinate represents the retention time of the volatile compounds during GC separation. The background of the entire graph is blue, the abscissa represents the ion migration time and the red vertical line at 1.0 of the abscissa is the RIP peak (reactive ion peak, normalized). Each point on the right side of the RIP peak represents a volatile compound and the color indicates the signal intensity of a single compound. Red represents high intensity and blue represents low intensity. **Table S1.** Analysis of volatile organic compounds in different varieties of cigar leaves. **Table S2.** Peak position and volume of each compound.

Figure S1. Two dimensional GC–IMS spectra of the different cigar tobacco leaves

			1100		
Table-1: Analysis o	f volatile organi	c compounds in	different	varieties of cigar lea	ves

	Molecula	Retentio	Retentio	Drift				<u> </u>				
Name	r formula	n index	n index/s	time/ms				Signal peak	volume /a.u.			
					CX80	CX81	CX14	DX4	YS2	HN2	HN3	JH3
gamma- Butyrolactone	C4H6O2	1711.1	2009.558	1.0904	436.58±23.47	471.33±44.34	484.31±11.88	609.92±15.34	449.69±12.55	542.97±29.11	600±77.18	487.74±43.61
2-Acetylpyridine	C7H7NO	1638.8	1717.593	1.11686	430.39±51.7	505.63±40.74	811.02±50.2	1005.78±115. 39	514.77±46.93	553.42±26.89	964.93±429.9 2	487.98±59.23
Benzaldehyde	C7H6O	1551.3	1420.55	1.15887	315.74±19.37	605.52±36.74	464.51±17.54	342.37±44.55	244.35±27.52	277.2±23.82	281.05±28.99	473.12±8.71
Acetic acid-M	C2H4O2	1504.5	1283.453	1.05773	4352.2±275.3 4	8781.97±164 5.09	15011.85±12 47.79	16462.86±16 91.04	10141.39±26 8.41	13187.88±44 7.8	18354.16±25 26.2	10360.84±15 60.49
Acetic acid-D	C2H4O2	1503.6	1280.914	1.15576	350.39±47.51	1102.5±413.7 1	5218.92±138 5.23	5977.37±128 1.7	1573.73±165. 91	3072.38±142. 67	10094.41±58 49.88	1773.57±592. 49
6-Methyl-5- hepten-2-one	C8H14O	1347.1	912.089	1.18021	554.81±92.05	1207.46±36.0 2	803.81±29.29	671.43±6.89	1023.82±21.9 8	316.74±22.57	311.8±12.98	801.16±26.14
1-Hexanol	C6H14O	1345.6	909.114	1.32839	671.87±101.6	859.86±37.49	1281.45±44.4 5	745.38±112.3 5	873.81±28.35	540.51±9.63	791.65±119.6 6	1148.63±87.1 8
Trimethylamine- M	C6H15N	1198.2	666.695	0.84871	171895.56±1 547.69	127912.33±5 008.94	167734.93±1 415.76	139864.06±3 145.22	137434.58±1 920.76	164163.94±2 465.54	136605.22±6 333.01	168589.63±4 299.14
Trimethylamine- D	C6H15N	1197.2	665.207	0.90521	102190.77±1 444.66	100406.72±1 193.46	98181.48±68 6.01	103938.36±6 61.62	104605.31±3 62.61	104096.21±9 78.44	104170.04±1 890.12	98347.85±75 3.53
2,5- Dimethylpyrazin e	C6H8N2	1313.6	848.138	1.10613	222.72±16.22	325.02±26.71	251.45±2.72	641.42±40	149.79±8.76	176.01±2.83	198.58±39.5	215.39±3.23
Styrene	C8H8	1281.2	791.623	1.04836	181.02±21.25	1276.62±76.8 4	503.19±26.83	121.94±16.52	148.49±39.39	108.01±30.8	75.22±7.45	332.91±19.53
(E)-2-Hexenal	C6H10O	1227.1	707.701	1.18042	125.63±9.83	264.95±15.21	167.62±0.84	165.12±7.89	149.52±7.16	89.11±8.12	147.95±22.58	145.19±18.97
Isovalerone	C9H18O	1195.1	662.33	1.33415	637.99±76.97	502.11±43.52	1601.18±47.9	511.54±136.4	509.43±7.59	733.99±63.34	856.96±35.84	1325.3±207.8 9
1-Butanol	C4H10O	1160.5	592.761	1.18498	401.55±17.81	525.76±15.95	431.19±29.49	576.62±39.8	481.95±10.26	382.95±37.16	365.32±17.3	506.53±30.09
Cyclopentanone- M	C5H8O	1143.5	560.245	1.1104	4477.49±409. 65	7992.82±172. 91	6815.21±448. 88	6344.29±262. 64	5624.33±651. 62	6153.03±837. 33	5584.59±104. 34	6372.22±294. 64
Cyclopentanone- D	C5H8O	1144.3	561.758	1.32349	2060.83±200. 73	18534.6±301 4.13	17290.16±22 14.05	14126.89±90 8.44	8231.66±296 3.77	13221.45±26 66.83	10979.78±83 3.63	14708.64±75 6.49
p-Xylene	C8H10	1145.4	563.753	1.07393	553.92±17.09	273.65±50.07	282.72±36.79	377.72±58.5	492.63±90.83	333.47±72.81	405.25±22.3	427.33±156.9 1
2-Methyl-1- propanol	C4H10O	1107.7	497.493	1.16921	255.07±19.3	290.68±13.29	339.18±7.07	338.79±71.58	221.86±21.19	256.16±11.85	243.26±12.52	358.25±42.9
Hexanal-M	C6H12O	1101.4	487.217	1.25937	2668.27±61.2 3	3500.59±45.4 6	3064.12±15.2 7	2702.02±65.6	2557.82±32.6 7	2071.76±31.0 4	1945.42±75.8 8	2735.32±57.0 9
Hexanal-D	C6H12O	1101.7	487.795	1.56113	1717.59±58.0 4	3619.51±60.7 5	2672.74±48.7 4	1768.1±49.13	1426.18±40.6 5	896.82±26.31	784.5±50.34	1913.77±94.4 5
2,3-Pentanedione	C5H8O2	1077.9	453.718	1.22483	760.31±14.55	952.57±24.11	1320.94±5.77	659.48±25.19	306.39±3.3	326.49±3.49	367.32±27.84	1133.25±42.5 1

Asian J Agric & Biol. 2023(3).

Toluene	C7H8	1063.9	435.235	1.04093	846.83±30.91	1326.31±37.3	1003.02±14.9 5	1121.58±145. 92	854.72±17.54	984.86±27.77	909.01±24.77	1048.93±33.7 8
Ethyl butanoate	C6H12O2	1063.4	434.658	1.20044	173.49±9.69	445.63±18.7	182.48±8.47	266.67±64.65	104.21±14.85	204.58±15.08	146.61±13.66	239.08±39.29
Dimethyl disulfide	C2H6S2	1063.4	434.658	1.13948	316.76±7.13	299.45±15.98	209.75±10.28	243.03±13.41	134.22±1.09	214±12.03	197.14±13.62	269.33±15.36
1-Propanol	C3H8O	1053.4	421.951	1.11205	769.03±24.23	217.49±30.02	649.18±15.4	450.91±21.54	251.56±8.08	262.24±12.24	274.34±6.87	1061.62±59.0 7
Methyl 3- methylbutanoate	C9H18O2	1052.9	421.373	1.21263	840.74±44.88	1910.97±138. 82	813.12±35.3	536.58±25.02	633.64±34.12	120.89±10.92	141.27±6.1	950.97±10.83
1-Penten-3-one	C5H8O	1042.1	408.089	1.07852	481.96±26.31	864.48±19.23	736.09±5.74	934.01±3.85	761.99±9.63	528.52±2.5	604.19±2.75	637.01±4.18
3-Methyl-2- pentanone	C6H12O	1035.4	400.003	1.18215	215.49±13.49	300.16±13.36	216.46±5.45	188.27±19.91	170.61±16.14	184.57±10.98	168.41±20.63	194.3±2.25
2-Butanol-M	C4H10O	1038.8	404.046	1.14456	137.15±7.97	218.15±20.05	142.07±6.32	176.99±15.78	148.21±4.44	122.23±4.81	116.97±8.98	179.41±2.89
2-Butanol-D	C4H10O	1040.2	405.779	1.30814	116.39±8.23	355.28±23.47	285.3±15.17	368.05±33.24	209.84±6.19	127.84±3.67	181.33±23.46	199.86±17.59
Thiophene	C4H4S	1030	393.65	1.03178	2060.48±78.5 9	2247.45±464. 61	1952.72±23.8 6	2271.85±52.6 7	2076.02±58	1618.4±73.87	1891.38±97.7 5	2673.4±35.69
3-Pentanone	C5H10O	1029.5	393.072	1.11306	259.96±9.24	286.13±18.13	370.94±7.94	332.05±20.88	380.83±8.98	245.76±26.92	306.21±11.43	396.92±26.91
Acrylonitrile	C3H3N	1013.8	375.167	1.08258	427.37±12.31	551.18±24.72	456.39±1.48	343.41±3.36	307.88±5.52	206.69±5.81	221.97±3.31	562.94±16.68
4-Methyl-2- pentanone	C6H12O	1019.4	381.521	1.17402	920.34±40.17	1024.58±25.6 6	1424.16±15.0 6	1066.12±15.0 3	804.3±7.78	562.71±13.5	764.28±12.81	1141.24±26.6
Pentanal-M	C5H10O	1003.8	364.193	1.18114	1331.19±30.8	1139.19±21.6 2	1453.57±27.0 8	1551.75±145. 29	1393.06±39.8	1394.6±143.7 3	1425.24±103. 78	1487.36±8.98
Pentanal-D	C5H10O	1003.2	363.616	1.42397	2275.4±70.46	2665.19±32.1 6	2241.33±67.2 5	1921.64±7.13	2606.24±39.4 5	1600.37±43.5 1	1647.52±64.1 9	2416.09±98.4 8
2-Pentanone	C5H10O	1000	360.15	1.3498	1120.31±22.6 1	1273.86±30.1 1	1495.49±14.5	1196.85±35.4	1023.21±2.35	984.55±12.14	1019.78±34.5	1520.54±20.0 9
Benzene	C6H6	969.5	335.314	1.0267	755.35±9.46	739.37±94.53	816±13.2	854.78±9.4	762.91±8.81	634.55±13.4	600.2±4.64	770.6±7.2
Ethyl isobutyrate	C6H12O2	967.2	333.582	1.18622	1874.43±41.2 4	3285.64±68.7 2	1795.42±2.91	1065.78±27.6 8	1043.15±8.48	551.13±1.53	404.33±5.6	1975.94±40.3 1
Ethanol-M	C2H6O	946.7	318.473	1.04224	1679.66±25.4 7	1734±126.12	1859.46±87.7 8	2052.11±15.6 3	1988.03±27.8 6	1976.8±48.69	2007.66±51.8	1811.83±17.2 9
Ethanol-D	C2H6O	947.2	318.821	1.12682	2916.54±28.6 8	2581.71±50.3 5	2771±116.31	3788.38±70.2 4	3443.8±52.73	3153.32±85.0 8	3351.71±21.0 2	2983.22±6.11
3-Methylbutanal	C5H10O	938.3	312.55	1.16815	269.17±5.26	311.42±57.07	367.84±10.25	331.08±8.14	270.8±10.79	392.34±16.02	356.32±39.32	272.85±7.4
2-Propanol	C3H8O	947.2	318.821	1.22966	1664.43±51.2 2	1732.93±113. 54	1822.71±99.2 5	1279.18±42.8 4	1337.89±13.8 5	795.57±35.37	836.58±30.21	1891.22±28.1 2
2-Methylbutanal	C5H10O	929.8	306.628	1.39497	2543.39±65.5 9	2919.29±35	3920.64±64.9 3	4187.87±63.7 7	2675.83±23.0 8	7269.34±10.5 4	6424.1±15.34	3984.73±78.1 5
Diacetyl	C4H6O2	998.2	358.188	1.16815	1836.27±45.4 6	1754.78±174. 16	2238.38±152. 17	1982.57±223. 38	1630.07±99.6 3	1894.4±188.0 4	1879.52±232. 35	2374.63±64.8 1
Methanol	CH4O	909.2	292.693	1.02687	3755.92±81.6 9	3411.51±126. 1	3824.49±15.7 7	4841.21±110. 67	4925.19±97.6 7	4699.51±185. 85	4816.11±184. 28	4445.14±38.8
2-Butanone	C4H8O	916.5	297.57	1.24792	2289.73±97.6 8	3277.88±51.0 4	2298.19±85.5 7	1527.32±46.1 6	1288±43.47	798.96±38.71	1043.15±47.9 8	2634.64±58.7 1
Ethyl Acetate	C4H8O2	899	286.073	1.3373	438.07±49.69	1128.87±37.0 9	806.51±41.13	708.11±40.71	1002.13±74.6 3	514.79±20.04	811.73±47.09	1276.16±9
Methacrolein-M	C4H6O	898	285.377	1.04609	672.55±20.86	646.01±76.99	692.93±30.87	639.54±22.11	635.61±13.09	511.47±25.03	533.57±17.62	628.47±22.67
Butanal-M	C4H8O	892.5	281.893	1.11144	600.51±15.27	675.51±10.66	715.93±30.19	746.26±13.64	659.48±18.74	757.88±4.59	833.22±12.99	686.3±14.38
Butanal-D	C4H8O	893.1	282.241	1.2854	291.25±8.99	410.83±10.63	406.51±7.79	400.53±14.34	273.55±4.57	260.15±46.17	397.57±60.71	358.77±3.39
Methacrolein-D	C4H6O	898	285.377	1.22101	1027.09±106. 82	1387.54±36.7 6	847.31±44.41	615.43±16.35	597.52±21.53	350.1±9.96	439.81±5.53	728.73±29.58
tert-Butanol	C4H10O	928.3	305.583	1.15662	517.71±14.73	591.08±66.58	655.49±63.5	612.93±33.46	575.71±23.73	596.38±40.85	591.3±15.24	559.48±8.97
2- Methylpropanal	C4H8O	835.2	247.752	1.28444	272.72±3.63	305.06±8.22	405.5±15.34	566.38±6.31	204.26±9.99	1470.11±16.3 6	1520.62±19.6 7	368.24±15.64
Acrolein	C3H4O	867.1	266.216	1.08934	379.3±7.6	456.81±18.61	359.63±7.29	187.89±8.43	132.07±1.58	158.96±10.51	182.53±6.26	376.91±19.05
Methyl acetate	C3H6O2	851.1	256.809	1.03456	122.41±3.25	80.57±3.71	126.19±7.1	306.11±11.81	224.21±11.98	383.97±48.82	330.33±12.18	100.08±7.39
Acetone	C3H6O	842.6	251.932	1.11337	10958.04±14 3.57	13199.66±21 5.25	10197.57±18 0.56	6614.58±15.1 3	7514.64±53.1 1	4433.88±87.2 2	5112.33±243. 89	11606.94±21 6.94
Propanal-M	C3H6O	821.9	240.436	1.04801	1534.03±24.6 1	1518.65±43.6	1504.8±17	1569.66±69.0 7	1447.25±43.7 4	1320.5±6.86	1498.75±49.2 6	1539.78±40.7 1
Propanal-D	C3H6O	822.5	240.784	1.14604	3875.6±75.17	5165.31±127. 62	4716.1±175.8 9	4676.14±150. 95	3985.45±76.0 5	3585.9±95.53	3631.14±37.4	4443.3±69.52
Dimethyl sulfide	C2H6S	796.8	227.197	0.95575	451.15±23.06	450.58±13.15	976.95±7	711.08±7.4	593.9±2.33	262.69±9.75	164.59±4.25	608.12±2.29
Acetaldehyde	C2H4O	774.4	216.049	0.96536	386.28±6.61	331.37±3.59	365.93±6.48	361.8±9.03	374.43±7.43	353.02±6.93	354.5±3.72	373.64±7.05
2-Ethylfuran	C6H8O	936.4	311.157	1.32289	948.06±32.59	1164.38±45.7 4	1010.06±25.5 4	820.11±13.89	936.57±14.47	587.7±38.85	869.98±9.65	1097.72±4.47
Nonanal	C9H18O	1399.3	1021.501	1.48151	161.93±19.9	264.46±23.9	209.32±15.1	237.94±17.83	211.34±19.8	231.53±13.31	263.89±33.05	186.44±6.96

Asian J Agric & Biol. 2023(3).

1-Penten-3-ol	C5H10O	1176.6	625.367	0.94082	930.93±32	1226.38±63.5 4	1069.1±22.84	1550.6±4.31	1341.13±25.3 5	1141.18±53.9 5	1213.33±86.4 8	1189.39±269. 3
Cyclohexanone- M	C6H10O	1298.6	820.984	1.16128	276.6±21.92	386.3±37.22	690.69±21.6	365.85±82.44	99.39±11.24	133.66±10.94	122.79±12.44	810.96±18.47
beta-Pinene	C10H16	1138.1	550.363	1.21943	131.74±9.2	734.94±18.01	206.15±39.98	296.96±46.13	40.89±5.5	204.98±56.05	116.38±89.7	210.75±16.79
Ethyl lactate	C5H10O3	1354.8	927.408	1.53592	145.55±4.88	190.09±9.92	197.96±11.18	194.65±7.79	152.73±9.92	138.03±17.67	106.76±5.81	250.79±9.4
o-Xylene	C8H10	1226.2	706.452	1.05037	184.84±13.13	291±20.56	188.23±8.86	155.52±1.64	149.99±8.28	174.2±9.3	120.74±9.23	247.16±2.29
Acetoin	C4H8O2	1298	819.971	1.06119	95.42±0.8	169.63±10.56	212.3±9.06	137.37±5.99	102.62±5.79	94.45±2.56	91.84±3.62	181.51±8.74
2- Methylpyrazine	C5H6N2	1275.6	782.469	1.09365	38.54±5.52	57.04±1.3	73.33±8.6	108.68±1.53	55.95±0.27	111.34±11.08	74.79±13.08	88.21±8.27
5-Methyl-3- heptanone	C8H16O	1262.9	762.198	1.28435	90.64±9.1	128.49±9.22	103.04±18.52	100.01±6.62	89.46±4.59	58.59±2.48	70.68±15.3	77.7±5.52
3-Methyl-2- butenal	C5H8O	1215	690.235	1.09365	37.41±2.15	69.95±4.33	32.97±7.6	35.23±2.89	25.65±5.5	23.67±5.57	25.04±3.8	36.47±0.57
Hexyl isobutyrate	C10H20O 2	1354.7	927.23	1.45844	124.14±15.3	202.69±21.27	187.32±8.54	180.83±6.3	153.66±19.33	143.09±17.77	121.21±9.79	187.86±12.57
2,3- Dimethylpyrazin e	C6H8N2	1334.8	888.139	1.09352	52.84±1.71	76.22±7.36	186.23±14.99	124.8±10.45	225.69±7.55	153.11±33.97	144.19±49.83	167.64±11.25
gamma- Terpinene	C10H16	1259.8	757.317	1.22082	37.21±6.39	76.41±6.96	67.76±2.7	45.11±2.73	38.22±1.46	27.29±3.24	29.74±4.7	94.04±9.64
Hexyl acetate	C8H16O2	1249.8	741.8	1.41846	41.48±3.53	122.25±11.82	93.75±6.88	53.57±1.79	47.4±4.86	34.3±2.36	42.94±5.78	84.9±6.68
2-Methyl-1- butanol	C5H12O	1227.6	708.423	1.23333	41.2±7.17	201.73±7.73	35.47±5.62	113.31±2.02	30.57±10.03	29.85±6.06	26.07±4.2	61.23±6.35
Butyl acetate	C6H12O2	1089.4	469.448	1.23501	35.86±1.9	92.58±24.76	64.86±12.28	67.04±4.82	55.6±10.53	67.19±6.31	62.18±2.67	53.62±4.73
Ethyl 3- methylbutanoate	C7H14O2	1084.6	462.894	1.26078	64.39±3.85	132.28±15.2	69.05±3.16	46.15±6	36.93±4.56	31.71±7.34	42.4±6.13	72.59±7.79
1,4-Dioxane	C4H8O2	1085.3	463.768	1.12256	67.18±7.07	126.89±2.24	95.1±5.05	85.75±7.09	67.09±2.6	48.7±4.09	79.35±6.68	107.95±3.29
Isobutyl acetate	C6H12O2	1033.5	397.782	1.23267	57.01±7.37	111.09±1.7	61.3±1.32	37.85±9.46	37.12±2.59	39.27±7.19	38.4±0.57	64.08±9.36
Limonene	C10H16	1204.7	675.712	1.22187	49.97±11.59	125.23±18.9	30.24±2.21	41.25±3.28	84.76±2.84	19.96±1.69	22.23±5.02	35.15±2.21
Butanoic acid	C9H18O2	1694.1	1936.957	1.15526	677.87±135.7 8	606.31±53.85	1914.53±66.5 3	1419.97±199. 81	537.14±67.73	769.78±61.43	1299.5±486.2 1	848.71±149.7 3
Furfuryl alcohol	C5H6O2	1740.2	2140.588	1.12118	332.02±34.15	405.09±51.89	468.78±50.41	9409.67±108 5.14	1020.18±76.3 6	804.45±26.99	805.77±164.2 3	558.54±62.69
2- Methylpropanoic acid	C4H8O2	1629.2	1682.418	1.14796	236.41±26.13	255.49±47.28	305.71±16.02	756.59±115.3 3	289.43±22.15	382±46.76	402.56±139.1 7	237.75±11.23
Acetophenone	C8H8O	1675.4	1859.578	1.19663	323.27±56.19	373.22±52.67	374.93±84.7	461.79±43.9	612.41±6.93	396.94±23.21	389.71±85.24	360.36±5.77
(E)-2-Heptenal	C7H12O	1314.9	850.539	1.25885	32.83±2.77	52.79±5.37	78.72±19.42	47.35±5.88	45.59±5.68	43.38±7.46	48.2±6.39	62.66±17.21
Cyclohexanone- D	C6H10O	1296.7	817.531	1.4629	49.7±1.37	70.33±5.49	69.69±6.93	59.57±7.51	56.38±5.08	55.4±1.58	55.49±4.17	53.56±5.83
1-Octen-3-one	C8H14O	1292.2	809.95	1.27148	51.25±6.1	63.92±9.43	104.83±25.46	75.61±6.06	54.42±8.87	55.86±9.97	73.67±16.78	83.89±10.03
2,6- Dimethylpyridine	C7H9N	1256.3	751.829	1.09281	45.09±9.88	55.9±3.03	63.6±7.85	54.03±6.01	47.45±1.13	42.28±4.23	40.69±4.47	67.02±1.8
Ethylpyrazine	C6H8N2	1346.6	911.031	1.12401	72.94±10.29	122.05±18.73	178.91±2.24	138.65±4.66	106.01±10.94	71.63±2.2	61.44±0.7	295.28±16.49
1-Hydroxy-2- propanone	C3H6O2	1312.5	846.171	1.05028	57.48±15.54	144.52±6.82	102.22±5.65	184.01±9.09	98.98±39.05	99.54±30.17	82.22±12.43	71.66±20.04
2-Ethyl-5- methylpyrazine	C7H10N2	1408.6	1042.435	1.17364	164.78±20.93	156.44±4.17	199.42±30.55	299.49±9.58	205.15±23.54	161.01±2.9	174.25±8.09	192.05±17.64

Table-2: Peak position and peak volume of compound

			-			_					-																
	[+] CX80 C3-1	[+] CX80 C3-2	[+] CX80 C3-3	[+] CX81 C3-1	[+] CX81 C3-2	[+] CX81 C3-3	[+] CX1 4C3- 1	[+] CX1 4C3- 2	[+] CX1 4C3- 3	[+] DX4 C3-1	[+] DX4 C3-2	[+] DX4 C3-3	[+] YS2B 2-1	[+] YS2B 2-2	[+] YS2B 2-3	[+] YS2 C3-1	[+] YS2 C3-2	[+] YS2 C3-3	[+] HN2 C3-1	[+] HN2 C3-2	[+] HN2 C3-3	[+] HN3 C3-1	[+] HN3 C3-2	[+] HN3 C3-3	[+] JH3 OC-1	[+] JH3 OC-2	[+] JH3 OC-3
gamma -	428.4	463.0	418.2	455.1	521.4	437.3	484.7	472.2	495.9	627.6	600.3	601.7	409.9	434.1	518.3	462.3	437.2	449.4	548.4	511.5	568.9	682.0	528.8	589.1	455.4	470.4	537.3
Butyrol actone	1486	4407	856	5884	956	488	6233	0462	5584	117	656	698	716	8048	8727	3755	488	8657	1064	3076	78	5066	387	01	7214	0497	527
2- Acetyl pyridin e	373.0 65	444.6 2302	473.4 9106	465.8 9468	503.6 9662	547.3 064	868.9 586	783.4 432	780.6 526	950.3 015	1138. 4315	928.5 988	458.9 7815	482.7 8934	474.2 598	537.5 149	460.8 0228	545.9 8224	547.6 064	582.7 4884	529.9 118	1460. 497	742.3 885	691.8 9996	549.1 394	483.9 225	430.8 8553
Benzal dehyde	293.5 0403	324.7 694	328.9 42	584.2 352	647.9 4135	584.3 752	472.6 4676	444.3 8748	476.5 0385	393.6 1456	320.5 813	312.9 0936	289.3 8257	294.0 3503	317.0 2417	237.4 4095	274.6 6748	220.9 551	304.1 132	258.8 526	268.6 2192	249.0 8994	288.4 005	305.6 4847	482.4 4052	471.7 225	465.1 837
Acetic acid-M	4653. 621	4113. 8975	4289. 094	1052 6.714	8560. 159	7259. 0483	1638 4.705	1470 4.151	1394 6.708	1500 0.321	1831 4.557	1607 3.689	8256. 386	9758. 102	9736. 947	1039 5.691	9860. 799	1016 7.683	1356 8.177	1330 1.128	1269 4.33	2126 8.69	1700 1.05	1679 2.752	1203 9.399	1008 8.966	8954. 145
Acetic acid-D	404.2 6596	332.4 0802	314.4 824	1560. 021	992.7 3816	754.7 3065	6772. 535	4771. 626	4112. 609	4769. 5596	7321. 992	5840. 5635	960.1 1523	1131. 4484	1287. 3508	1738. 9415	1407. 1378	1575. 1093	2952. 6748	3230. 244	3034. 2087	1684 3.426	6963. 098	6476. 707	2424. 4248	1630. 728	1265. 5637

6- Methyl -5- hepten- 2-one	471.4 3143	539.3 99	653.5 958	1167. 5773	1217. 1859	1237. 6178	770.3 1	824.5 9784	816.5 371	665.8 8916	669.2 4854	679.1 378	1003. 7961 4	989.2 588	1056. 5687	1028. 9448	999.7 28	1042. 7845	330.4 5724	329.0 7306	290.6 89	303.1 8448	305.4 8184	326.7 2238	801.3 9764	774.9 07	827.1 818
1- Hexan ol	565.1 6095	683.0 1715	767.4 372	818.4 0125	869.8 118	891.3 745	1235. 476	1324. 1908	1284. 6958	629.3 936	753.0 576	853.6 925	905.1 5643	874.9 864	840.2 7277	847.2 315	903.6 434	870.5 561	542.2 629	530.1 296	549.1 505	667.3 7335	801.4 7986	906.0 8514	1248. 3158	1086. 6654	1110. 901
Trimet hylami ne-M	1704 12.19	1717 74.08	1735 00.42	1221 32.69	1306 11.44	1309 92.85	1669 41.42	1668 93.89	1693 69.47	1431 62.27	1395 31.67	1368 98.23	1277 44.58	1286 56.16 4	1270 53	1359 77.94	1367 14.45	1396 11.34	1619 52.86	1668 22.62	1637 16.34	1439 08.5	1332 75.44	1326 31.72	1669 32.84	1653 65.39	1734 70.67
Trimet hylami	1037 52.44	1009 02.06	1019 17.80	9947 2.95	9999 5.89	1017 51.33	9745 6.945	9882 1.06	9826 6.42	1044 72.13	1031 98.12	1041 44.83	1058 15.16	1053 69.78	1044 53.76	1041 92.55	1047 50.79	1048 72.6	1048 89.12	1030 02.75	1043 96.74	1057 70.58	1046 54.76	1020 84.76	9817 4.83	9917 2.84	9769 5.88
2,5- Dimeth ylpyraz	204.1 1372	230.2 0673	233.8 4161	294.4 8163	344.0 7697	336.4 8947	250.0 2531	249.7 4315	254.5 8893	599.6 191	679.3 289	645.3 018	125.8 8361	130.6 3385	129.7 1846	140.5 8092	158.0 1328	150.7 9016	178.6 8504	176.3 0327	173.0 5052	243.9 2865	171.6 8411	180.1 1368	217.8 6232	216.5 6256	211.7 39
ine Styrene	162.9	175.6	204.4	1346.	1289.	1194.	482.9	493.0	533.6	109.5	140.7	115.5	254.6	239.7	295.2	177.2	103.5	164.6	119.4	131.4	73.12	77.98	80.88	66.77	354.7	326.7	317.2
(E)-2- Hexena	127.2 5891	115.0 8115	134.5 3758	255.1 4215	282.4 7272	257.2 3288	166.7 539	168.4 2471	167.6 7151	166.5 7393	172.1 7735	156.6 002	159.2 7306	177.5 697	175.8 078	157.7 2444	146.2 3988	144.5 8463	98.47 0856	83.86 464	85.00 665	172.4 4176	127.9 6989	143.4 3373	144.1 9359	126.7 4345	164.6 3873
I Isovale rone	554.4 362	653.5 114	706.0 1514	551.7 478	484.0 8466	470.5 0937	1553. 0667	1648. 8602	1601. 6178	362.4 7137	542.0 1184	630.1 224	527.8 9886	465.1 4813	418.5 389	515.3 5004	500.8 7048	512.0 684	663.3 474	752.9 265	785.7 094	824.7 045	4 895.5 3595	850.6 353	1555. 9395	4 1267. 6101	1152. 3401
1- Butano	382.6 366	403.9 9045	418.0 101	536.6 462	533.1 846	507.4 5816	464.4 2383	420.9 851	408.1 608	596.3 241	602.7 207	530.8 028	480.5 9644	453.7 0135	478.7 7896	493.4 1406	478.8 101	473.6 2213	419.2 3877	384.6 3843	344.9 7015	358.6 4542	352.3 577	384.9 6506	503.9 6103	477.8 0804	537.8 326
Cyclop entano ne-M	4794. 693	4622. 7646	4014. 998	8051. 0254	7798. 3228	8129. 1245	7276. 672	6788. 8877	6380. 0693	6316. 5986	6096. 5923	6619. 683	5921. 5977	6834. 348	6244. 5986	6373. 97	5305. 495	5193. 5244	7103. 128	5833. 1963	5522. 753	5495. 236	5699. 2515	5559. 284	6712. 2505	6192. 295	6212. 1177
Cyclop entano ne-D	2194. 0938	2158. 4402	1829. 9603	1665 1.959	1694 0.826	2201 1.023	1962 0.201	1703 6.27	1521 3.998	1433 8.576	1313 1.3	1491 0.8	9219. 496	1441 5.944	1089 6.893	1162 5.595	6915. 276	6154. 1216	1610 2.16	1272 3.492	1083 8.688	1166 1.615	1122 7.293	1005 0.417	1548 2.645	1397 0.981	1467 2.3
p- Xylene	534.8 887	558.9 043	567.9 582	239.5 9612	331.1 3712	250.2 1861	242.4 8003	291.0 467	314.6 3348	328.7 198	361.9 4705	442.4 9228	550.0 3705	352.8 1537	449.0 622	390.9 395	565.7 142	521.2 401	257.1 5735	341.0 731	402.1 908	391.1 7056	393.6 1237	430.9 655	498.9 575	535.6 5076	247.3 8802
2- Methyl -1- propan	235.9 6346	254.6 8446	274.5 6528	293.7 3508	276.1 3165	302.1 869	344.6 6797	331.1 9934	341.6 5964	371.8 9633	387.8 3118	256.6 4856	196.2 485	211.2 4576	209.4 8607	233.0 8397	197.4 2162	235.0 7916	249.4 3431	269.8 4836	249.2 1213	234.0 5046	238.2 0749	257.5 084	388.5 2438	309.1 5225	377.0 6204
ol Hexana l-M	2608. 2668	2665. 8918	2730. 6643	3485. 7192	3464. 43	3551. 6272	3065. 954	3048. 0173	3078. 4006	2668. 3025	2777. 6157	2660. 1372	2512. 9575	2514. 8372	2496. 7073	2595. 4958	2537. 3865	2540. 579	2105. 8167	2064. 3975	2045. 0565	1885. 4169	1920. 135	2030. 7214	2801. 1758	2700. 0032	2704. 769
Hexana l-D	1668. 2922	1702. 9059	1781. 5626	3616. 9287	3560. 09	3681. 5146	2681. 1711	2620. 3445	2716. 718	1735. 2178	1824. 5814	1744. 5116	1331. 9761	1340. 63	1282. 0519	1473. 0857	1401. 1456	1404. 3094	898.7 8204	922.0 8887	869.5 8075	736.0 852	780.8 592	836.5 5786	2022. 6829	1864. 3252	1854. 3092
2,3- Pentan edione	744.7 147	762.6 781	773.5 317	957.9 401	973.5 3503	926.2 2815	1316. 3545	1319. 0583	1327. 4147	664.3 25	681.8 9954	632.2 2644	289.6 225	278.6 1563	286.0 676	302.6 068	308.6 4124	307.9 3692	330.2 462	323.3 541	325.8 692	336.3 7393	390.3 5294	375.2 2015	1084. 6436	1151. 6512	1163. 4536
Toluen e	813.5 1544	852.4 1724	874.5 687	1366. 3142	1320. 1316	1292. 4766	1019. 7688	998.2 616	991.0 2515	1194. 699	1216. 4883	953.5 6537	764.8 3105	764.6 4215	751.5 468	873.2 556	838.3 887	852.5 083	1012. 8434	984.4 264	957.3 1134	890.8 8794	898.8 954	937.2 3724	1085. 7922	1019. 4377 4	1041. 5714
Ethyl butano ate	164.4 9654	172.2 1068	183.7 5746	467.1 6333	433.4 7394	436.2 5565	190.7 5618	173.8 1927	182.8 5762	269.2 3737	330.0 04	200.7 81	63.82 3864	62.90 8478	61.61 5383	111.6 7065 4	87.11 516	113.8 5026	196.8 0618	221.9 6379	194.9 643	152.3 832	131.0 0711	156.4 4246	281.2 2406	203.4 6495	232.5 574
Dimeth yldisulf ide	324.8 6716	313.9 1583	311.4 8294	307.2 0596	281.0 7074	310.0 7877	221.5 2165	205.1 2465	202.5 9178	247.2 747	253.8 0019	228.0 0046	104.4 1199	94.00 7225	92.99 408	134.9 2195	132.9 6231	134.7 7754	206.3 9554	207.7 2195	227.8 716	211.4 5238	195.6 3083	184.3 3734	262.9 3628	258.2 016	286.8 519
1- Propan	741.0 621	782.4 611	783.5 8093	205.2 6018	251.6 9612	195.5 2197	631.7 0654	660.7 923	655.0 356	471.4 2255	428.4 7485	452.8 2596	205.5 0014	216.7 2253	197.6 038	260.8 3667	247.8 1017	246.0 3494	276.1 1832	252.9 8256	257.6 2616	279.8 932	276.4 627	266.6 5784	995.1 3104	1108. 0237	1081. 7063
Methyl 3- methyl butano ate	790.3 0634	855.6 566	876.2 595	1987. 2893	1994. 8925	1750. 7327	781.6 08	806.4 745	851.2 663	562.8 369	533.9 022	513.0 127	874.6 709	863.5 7513	926.0 3485	620.3 397	608.1 7084	672.4 0576	124.6 7716	108.5 7567	129.4 0297	140.3 3429	147.7 8181	135.6 9958	947.6 509	942.1 808	963.0 636
1- Penten-	455.4 1214	482.4 272	508.0 314	857.5 807	849.6 555	886.2 066	729.7 4414	737.6 338	740.9 021	937.1 617	929.7 23	935.1 332	516.7 787	519.5 537	517.5 941	768.1 193	750.8 8916	766.9 506	530.4 162	525.6 859	529.4 4525	606.4 134	601.1 232	605.0 4694	641.7 4023	635.4 5026	633.8 2837
3- Methyl -2- pentan	201.1 9426	217.2 8687	228.0 0269	289.9 2245	295.2 7704	315.2 667	210.3 3258	218.3 0669	220.7 4402	185.4 9936	209.4 1054	169.8 8889	160.8 061	175.7 1893	160.4 6394	180.3 403	151.9 7884	179.5 0046	172.5 395	194.0 4224	187.1 3461	168.2 092	147.8 7514	189.1 4314	194.8 2654	191.8 2709	196.2 3517
2- Butano	137.2 082	129.1 4967	145.0 8453	220.1 0635	197.1 9499	237.1 5878	138.9 7455	137.8 9474	149.3 4154	178.7 806	191.8 0264	160.3 8618	132.2 069	133.0 8896	125.9 9692	143.1 2268	150.2 1693	151.2 8784	116.7 1196	125.5 5478	124.4 2832	109.0 1781	115.1 8113	126.7 0346	181.9 0002	176.2 3883	180.0 8035
2- Butano	109.7 6878	113.8 0360	125.6 0588	357.0 9683	330.9 5715	377.7 9303	267.7 954	293.4 4403	294.6 5048	361.0 8942	404.2 2375	338.8 4238	120.5 6903	111.9 7282	101.6 7693	215.5 7607	203.2 8276	210.6 5475	125.4 2592	126.0 1914	132.0 6693	157.3 5118	182.4 1548	204.2 2482	220.1 5968	190.1 985	189.2 209
Thioph ene	1981. 8148	4 2060. 6426	2138. 997	2469. 0366	2559. 7822	1713. 5328	1927. 647	1975. 1538	1955. 3574	2306. 0798	2298. 2703	2211. 1995	2328. 0137	4 2227. 6387	2454. 295	2009. 2386	2113. 7974	2105. 0188	1533. 1437	1658. 8562	1663. 2109	1784. 3999	1913. 694	1976. 0381	2645. 8286	2660. 6482	2713. 7097
3- Pentan	261.9 3204	249.8 9423	268.0 5978	295.4 57	297.6 9882	265.2 381	379.5 3937	369.3 8568	363.8 978	336.9 3384	350.0 5588	309.1 5448	286.8 0524	283.1 326	283.5 6363	375.6 712	375.6 2454	391.1 9724	217.7 5568	248.0 9679	271.4 3918	306.4 239	294.6 6382	317.5 285	425.8 5535	372.6 473	392.2 526
Acrylo nitrile	427.8 1274	414.8 5068	439.4 5062	534.2 3773	539.7 567	579.5 427	455.9 5425	455.1 6995	458.0 3833	346.9 4757	343.0 216	340.2 6212	305.9 2618	328.5 7092	320.9 6344	313.4 5593	302.4 224	307.7 4808	200.3 0331	211.6 4568	208.1 241	219.4 487	220.7 3956	225.7 2533	564.4 788	545.5 3564	578.7 9846
4- Methyl -2-	877.2 3047	927.0 48	956.7 27	1013. 4677	1053. 927	1006. 3423 5	1435. 3971	1407. 0468	1430. 0403	1061. 9521	1053. 616	1082. 7994	779.9 838	780.3 793	774.7 648	797.2 384	812.6 401	803.0 085	549.4 4824	562.2 3926	576.4 3884	753.1 087	778.2 5745	761.4 805	1112. 1096	1164. 2423	1147. 381

pentan one																											
Pentan	1295.	1345.	1352.	1117.	1160.	1139.	1424.	1459.	1477.	1554.	1405.	1695.	1416.	1407.	1330.	1397.	1430.	1351.	1513.	1234.	1435.	1378.	1544.	1353.	1477.	1493.	1491.
al-M	876	258	4457	2931	5297	7579	1747	015	516	1086	2915	8405	5272	8777	2875	5262	438	2236	7072	9515	1372	221	2128	2899	0516	471	5691
Pentan	2355.	2223.	2247.	2628.	2679.	2687.	2190.	2216.	2317.	1913.	1923.	1927.	2420.	2492.	2496.	2651.	2582.	2584.	1562.	1590.	1647.	1581.	1651.	1709.	2331.	2524.	2392.
al-D	522	095	5793	414	1738	9944	0388	4985	4644	6918	7566	4758	9387	4058	3828	7942	9048	0356	3872	882	8381	2637	8574	4269	2263	0798	9683
2-	1099.	1116.	1144.	1279.	1241.	1301.	1498.	1508.	1479.	1167.	1236.	1186.	929.7	920.2	976.5	1024.	1020.	1024.	975.2	998.2	980.0	989.1	1012.	1057.	1528.	1535.	1497.
Pentan	7075	7333	5015	0857	477	0172	15	477	8423	4995	1669	8738	364	337	367	2213	5153	8812	747	927	7385	855	9745	1686	2401	6343	7323
Benzen	745.8	755.4	764.7	669.0	846.8	702.2	826.1	820.8	801.0	844.0	861.5	858.7	839.6	845.2	879.0	760.2	755.7	772.7	649.7	629.2	624.6	604.8	595.5	600.2	764.1	778.3	769.2
	656	2163	755	2637	227	5806	354	03	755	4095	0885	938	151	896	745	785	149	4066	9877	3145	2335	203	487	1674	423	619	902
Ethyl	1839.	1864.	1919.	3292.	3213.	3350.	1792.	1796.	1797.	1037.	1092.	1066.	1323.	1339.	1339.	1042.	1035.	1052.	550.6	549.9	552.8	409.5	398.3	405.0	1966.	2020.	1941.
isobuty	1587	3474	775	3215	829	7817	1962	2133	8574	5411	8688	9357	8575	7257	9724	1335	2148	0918	3916	126	4766	161	848	836	222	2211	3866
Ethano	1663.	1666.	1709.	1710.	1621.	1870.	1870.	1940.	1766.	2039.	2047.	2069.	2070.	2108.	2056.	1991.	1958.	2014.	1945.	2032.	1951.	2065.	1965.	1991.	1796.	1808.	1830.
I-M	7664	1859	0337	3268	3853	2797	9862	9111	4921	2621	5583	512	3386	505	9255	2886	6879	1222	9747	9387	4915	506	5422	9307	4598	491	5425
Ethano	2894.	2906.	2948.	2524.	2601.	2618.	2790.	2876.	2646.	3829.	3707.	3828.	3631.	3722.	3547.	3494.	3448.	3388.	3077.	3137.	3245.	3345.	3334.	3375.	2981.	2989.	2977.
1-D	4944	1565	96	38	9702	765	009	633	3486	6274	2832	23	237	758	1814	0889	3862	9304	0454	843	0745	4717	5203	1396	7717	928	9612
3- Methyl butanal	263.9 5166	274.4 786	269.0 8627	302.7 2232	259.1 9254	372.3 407	357.4 6786	368.1 0147	377.9 6188	323.4 7632	330.0 862	339.6 6446	282.3 727	301.6 6696	316.1 71	269.3 24	260.8 322	282.2 5052	373.9 4263	403.2 106	399.8 7122	385.2 0502	372.2 0517	311.5 363	266.5 8673	270.9 3704	281.0 1297
2- Propan ol	1616. 6594	1658. 103	1718. 5142	1715. 7546	1628. 9683	1854. 0804	1850. 1389	1905. 3533	1712. 6307	1288. 0641	1316. 8766	1232. 5964	1535. 2366	1548. 9496	1553. 6066	1326. 9948	1333. 2025	1353. 481	835.4 181	783.3 699	767.9 1266	825.3 6884	813.5 821	870.7 872	1882. 162	1868. 7422	1922. 7434
2-	2469.	2567.	2593.	2878.	2941.	2936.	3987.	3916.	3858.	4150.	4261.	4151.	2000.	1980.	2024.	2701.	2667.	2657.	7260.	7266.	7280.	6440.	6422.	6409.	3896.	4014.	4043.
Methyl	2388	1008	825	977	9324	9487	6384	2783	0068	331	5015	775	6224	826	9092	8562	7869	8489	3726	7026	942	234	384	6904	1597	0293	9949
Diacet	1791.	1834.	1882.	1753.	1581.	1929.	2258.	2379.	2077.	1890.	2237.	1820.	1493.	1508.	1539.	1626.	1532.	1731.	1783.	2111.	1788.	2041.	1613.	1983.	2442.	2313.	2368.
yl	954	0574	7974	0945	4703	7754	7664	3308	0374	2871	3013	1089	3464	8636	7869	4999	2727	4451	4467	5178	2502	9905	3756	1924	3306	1562	3997
Methan	3661.	3809.	3795.	3311.	3553.	3369.	3807.	3828.	3837.	4937.	4866.	4720.	4137.	4139.	4238.	4931.	5019.	4824.	4884.	4512.	4701.	4680.	4741.	5025.	4406.	4444.	4484.
ol	936	8467	9849	4956	1604	8828	1382	3567	9683	262	1733	182	751	744	9883	221	705	643	161	4756	901	4873	909	924	8394	166	412
2- Butano ne	2185. 713	2303. 9736	2379. 5176	3317. 668	3220. 337	3295. 643	2358. 788	2200. 306	2335. 4812	1529. 1244	1572. 5453	1480. 2822	1376. 6545	1228. 786	1371. 7355	1238. 5309	1305. 361	1320. 1049	756.0 7263	809.5 0507	831.3 033	1001. 0299 7	1033. 0486	1095. 3749	2568. 1584	2656. 398	2679. 3647
Ethyl Acetate	407.8 2086	410.9 7806	495.4 226	1091. 2534	1129. 9419	1165. 4176	846.4 3164	808.8 274	764.2 6447	661.3 0554	727.7 467	735.2 787	1157. 6302	1153. 8909	1191. 655	925.6 349	1074. 7388	1006. 0024 4	521.8 7994	530.3 1396	492.1 6318	758.3 9	829.2 703	847.5 336	1279. 0857	1266. 0614	1283. 3405
Methac rolein- M	693.3 8855	651.6 6284	672.5 857	652.9 671	565.7 786	719.2 7936	690.2 269	725.0 539	663.5 007	615.9 005	643.0 245	659.7 058	689.4 626	685.9 966	689.4 6704	641.3 5583	620.6 33	644.8 486	484.8 9563	534.5 91	514.9 3677	553.8 0304	525.3 2825	521.5 7556	603.0 9174	635.6 258	646.6 971
Butana	585.7	599.4	616.2	687.3	666.5	672.6	725.7	739.9	682.0	758.9	731.8	747.9	607.7	606.7	621.5	679.7	642.7	655.9	756.1	763.0	754.4	847.1	821.3	831.2	670.7	688.9	699.1
l-M	972	5245	871	03	6683	568	8705	578	351	61	482	5636	176	6666	6836	288	5336	487	1707	914	218	0486	5846	0996	727	4714	675
Butana	282.2	291.2	300.2	422.2	401.2	408.8	413.1	397.9	408.3	416.4	396.3	388.7	250.0	249.3	245.3	277.9	273.8	268.8	252.8	218.0	309.5	327.8	425.8	438.9	355.9	362.5	357.8
l-D	5275	6886	361	9376	9538	94	932	5377	8297	7705	963	088	8531	0989	2617	5352	654	3298	4036	6673	433	8217	5977	7293	7037	4025	0557
Methac rolein- D	1149. 4761	952.6 1444	979.1 784	1363. 7725	1429. 8848	1368. 9738	809.6 317	836.0 091	896.2 758	597.9 194	630.3 0676	618.0 601	660.7 4786	618.4 712	663.9 3616	586.2 8815	583.9 264	622.3 438	339.4 845	351.5 667	359.2 431	445.6 6504	439.0 9293	434.6 7816	695.7 015	737.6 915	752.7 932
tert- Butano l	505.5 385	513.4 971	534.0 9106	586.9 8584	526.6 4575	659.6 1475	649.3 9215	721.8 2556	595.2 576	578.6 362	614.6 696	645.4 9286	648.1 4575	665.1 493	656.6 975	572.1 13	553.9 852	601.0 433	630.0 2686	550.9 235	608.1 9525	585.9 638	608.4 93	579.4 5166	549.4 172	562.3 903	566.6 407
2- Methyl propan	269.3 1735	276.5 449	272.2 9013	295.6 814	310.9 9637	308.5 035	421.9 3607	403.0 2618	391.5 505	568.0 4706	571.6 886	559.4 086	187.6 4119	178.4 4954	183.4 5306	214.8 5399	202.9 1617	195.0 0429	1463. 1654	1488. 7917	1458. 3729	1499. 7053	1523. 381	1538. 7626	353.5 708	366.4 551	384.7 0288
Acrolei	372.9	377.1	387.7	449.4	443.0	477.9	359.5	352.3	366.9	193.4	192.0	178.1	141.3	142.5	148.4	132.2	130.4	133.5	156.5	149.9	170.4	175.3	186.3	185.8	356.0	381.3	393.3
n	8724	9092	312	11	322	769	9415	6212	328	3568	3816	8736	2967	2501	5059	0912	2722	7997	0911	0366	7989	0345	9697	7929	3033	6792	324
Methyl	125.0	118.7	123.4	80.58	76.85	84.28	131.8	128.4	118.2	319.4	296.8	302.0	179.8	193.2	185.0	236.3	212.3	223.8	396.1	425.5	330.2	341.8	317.6	331.5	94.47	97.31	108.4
acetate	1488	6935	3961	0795	925	012	803	6758	339	0594	523	7578	6261	1573	7054	5005	9221	9899	5634	354	1286	8184	1072	104	159	773	5569
Aceton	1081	1095	1110	1341	1298	1320	1027	9991.	1032	6625.	6620.	6597.	8732.	8371.	8576.	7454.	7534.	7555.	4352.	4422.	4526.	4835.	5203.	5297.	1136	1168	1177
e	4.588	7.786	1.737	4.072	3.584	1.322	2.128	668	8.91	5776	8384	3203	636	24	0625	508	2666	1494	996	359	2954	892	9937	103	1.799	4.904	4.128
Propan	1510.	1531.	1559.	1533.	1552.	1469.	1518.	1485.	1510.	1635.	1575.	1498.	1579.	1545.	1613.	1497.	1429.	1415.	1326.	1313.	1321.	1441.	1529.	1524.	1494.	1550.	1573.
al-M	8899	3107	8921	7947	669	4976	5441	7878	0546	8159	1582	0012	6351	8013	9711	0813	4026	252	9325	2839	2914	9581	8375	4586	7062	776	8628
Propan	3800.	3875.	3950.	5309.	5068.	5117.	4868.	4523.	4756.	4843.	4633.	4551.	3475.	3404.	3469.	4062.	3910.	3983.	3512.	3694.	3550.	3669.	3594.	3629.	4366.	4460.	4502.
al-D	6372	197	9807	9854	7026	227	106	449	7397	922	118	366	6035	2566	1936	6382	5881	135	8254	0012	883	4302	6882	302	9204	0854	8955
Dimeth yl sulfide	425.5 9982	457.4 4955	470.4 0717	435.4 1803	457.5 673	458.7 6263	969.9 179	983.9 22	977.0 0995	711.4 919	703.4 734	718.2 64	681.3 108	638.8 0743	680.3 243	592.6 403	592.4 6924	596.5 885	261.7 4094	253.4 4691	272.8 8113	159.7 7518	167.8 4482	166.1 3846	610.7 2815	607.1 888	606.4 5337
Acetal	382.2	382.6	393.9	328.6	330.0	335.4	371.7	358.9	367.1	371.6	359.8	353.9	360.9	358.8	355.5	381.2	366.5	375.5	345.1	358.3	355.5	355.2	350.4	357.8	365.5	378.5	376.7
dehyde	5665	7212	0787	0648	8398	2746	208	2316	4163	5637	2965	2184	5834	365	1266	5018	173	2676	8567	566	3043	0828	758	189	6638	7956	821
2- Ethylfu ran	910.6 243	963.4 124	970.1 334	1207. 1522	1169. 8391	1116. 1533	1017. 4159	981.6 513	1031. 1089	831.1 9	824.6 268	804.5 2374	896.8 557	878.2 925	889.2 949	936.2 7075	951.1 9025	922.2 533	547.2 1313	624.6 7224	591.2 2284	859.0 649	873.4 6	877.4 0594	1102. 4092	1097. 2457	1093. 5175
Nonan	149.8	151.0	184.8	243.7	290.5	259.0	225.2	195.2	207.5	239.4	254.9	219.4	172.5	194.0	191.9	211.4	231.0	191.4	216.3	241.3	236.8	256.8	234.9	299.8	179.2	186.8	193.1
al	3478	5011	9948	1759	979	7922	3874	0425	2422	317	7774	1759	9727	489	5818	8793	5547	6494	7148	2246	8106	6185	1031	8507	7383	6356	8018
1- Penten- 3-ol	894.1 6736	952.5 1	946.1 045	1267. 7656	1258. 1562	1153. 2177	1049. 0367	1093. 9552	1064. 3007	1545. 7703	1554. 0509	1551. 9669	790.2 197	778.9 04	814.8 8855	1324. 1152	1329. 0099	1370. 2623	1104. 1422	1116. 3245	1203. 0796	1129. 7552	1207. 7832	1302. 4414	1438. 2766	1226. 3754	903.5 101
Cycloh exanon e-M	252.9 0479	280.7 1747	296.1 6797	347.7 8296	389.0 3986	422.0 716	702.5 9357	665.7 5586	703.7 267	444.1 631	373.5 7602	279.8 1763	104.1 2315	117.3 074	122.3 3537	98.04 8706	111.2 3740 4	88.88 594	141.5 6296	138.2 3691	121.1 6669 5	136.8 7938	118.1 7835	113.3 1702 4	809.4 4507	793.2 858	830.1 3904
beta-	121.2	138.3	135.6	714.1	746.1	744.4	230.5	227.8	160.0	326.9	320.0	243.8	37.08	50.30	44.63	46.81	35.92	39.94	186.6	267.8	160.4	218.8	78.12	52.15	212.0	193.3	226.8
Pinene	3335	68	1295	6254	589	8364	7999	6937	0847	69	636	4422	654	412	8493	1428	6754	1574	236	998	0173	7547	347	4892	9894	1793	229
Ethyl lactate	140.3 7651	150.0 7474	146.1 8878	196.3 2404	195.2 9756	178.6 5839	191.0 6056	191.9 515	210.8 5472	200.1 6779	198.0 3262	185.7 3932	150.2 0583	164.0 5217	162.8 2573	142.4 4946	162.2 3473	153.5 0745	135.4 0187	121.8 2435 6	156.8 7793	111.1 1742 4	108.9 9559	100.1 7054	240.5 2928	252.8 5591	258.9 9478

o- Xylene	173.7 4596	181.4 3344	199.3 2794	300.9 7153	304.6 7087	267.3 5992	187.3 7013	179.8 2928	197.4 8827	154.2 9619	157.3 8673	154.8 9163	192.6 6693	191.0 9166	213.4 4536	141.7 607	158.3 1767	149.9 0143	182.2 8883	176.2 8549	164.0 3662	111.8 6395	120.0 7801	130.2 9169	247.7 324	249.0 9882	244.6 352
Acetoi n	94.75 82	96.30 458	95.19 812	170.9 8201	179.4 538	158.4 6208	217.3 8463	201.8 4747	217.6 7569	137.7 0811	143.1 8933	131.2 1597	93.58 0635	96.91 114	102.6 9453	108.7 8896	101.7 7247	97.29 774	92.92 298	97.40 883	93.01 408	95.74 468	91.19 885	88.59 044	191.5 3159	177.5 608	175.4 5009
2- Methyl pyrazin e	33.00 7286	38.55 294	44.05 1933	55.54 316	57.87 829	57.68 9434	70.63 373	66.41 4505	82.95 592	109.9 9763 5	109.0 3336	107.0 0484 5	45.16 0618	51.21 5065	49.65 757	56.23 859	55.70 7573	55.91 6424	98.70 415	119.4 3368	115.8 7434	63.57 5024	71.63 799	89.15 9225	97.75 0984	83.06 256	83.83 1314
5- Methyl -3- heptan one	80.22 308	94.64 266	97.05 778	137.3 0374	129.2 5188	118.9 1377	124.4 1943	92.60 0815	92.10 5354	107.3 9811	94.62 267	98.00 205	77.71 687	75.61 726	73.93 757	94.71 154	86.18 866	87.47 509	57.64 722	61.39 9864	56.70 9614	53.92 568	83.92 685	74.17 753	82.23 827	79.29 6585	71.55 134
3- Methyl -2- butenal	39.20 8374	35.02 2476	37.98 8598	73.53 542	71.18 474	65.13 6955	30.09 8932	41.57 9052	27.22 3902	37.28 6503	31.91 8598	36.47 332	21.02 9482	26.09 2999	23.90 6733	22.26 9255	22.68 2512	31.99 414	25.44 6451	17.42 3475	28.12 596	23.67 344	29.33 0183	22.11 595	37.00 2113	35.86 01	36.53 553
Hexyl isobuty rate	124.8 8602	108.4 7568 5	139.0 523	227.2 4283	190.6 762	190.1 474	197.1 8166	182.2 3773	182.5 5324	179.8 6928	175.0 6349	187.5 5676	158.9 3977	199.5 6345	178.4 9176	149.4 2819	174.7 6355	136.7 9716	163.4 1896	135.2 93	130.5 472	127.9 0324 4	125.7 5252 5	109.9 6875	192.0 2039	173.7 3262	197.8 2155
2,3- Dimeth ylpyraz ine	54.33 8936	50.97 0665	53.20 803	71.30 916	72.67 3355	84.68 6714	203.5 3383	177.5 2304	177.6 3412	119.9 9135 6	136.7 9272	117.6 2957	175.7 4115	183.6 3303	162.5 9244	232.7 4182	226.6 1404	217.7 2456	190.9 7835	143.0 2713	125.3 1483	196.3 4627	139.1 523	97.07 333	158.8 3313	163.7 6334	180.3 1364
gamma - Terpin ene	34.83 8062	32.34 0744	44.43 8526	69.73 3894	75.86 8324	83.62 469	67.78 536	70.45 154	65.05 253	43.75 865	48.25 1163	43.32 0953	49.98 4177	49.82 4207	40.59 2564	38.93 9533	39.17 727	36.54 2194	23.65 3446	28.37 9246	29.85 0088	34.71 5862	29.13 022	25.36 6465	83.12 922	101.3 9699	97.60 657
Hexyl acetate	37.75 5306	41.90 788	44.78 513	114.5 4124 5	116.3 5647	135.8 6179	101.4 9252	88.34 827	91.39 659	55.61 648	52.74 367	52.33 7082	52.30 5977	46.17 1543	45.45 1675	46.16 0435	52.75 7004	43.28 763	36.97 1004	32.49 8493	33.42 2768	42.34 78	37.48 647	48.99 3248	77.20 3636	89.12 145	88.37 937
Methyl -1- butanol	48.61 1095	40.67 4774	34.30 9273	203.4 2274	193.2 8682	208.4 707	39.83 4927	37.44 4252	29.13 4665	113.5 081	111.1 9297	115.2 2334	25.66 8633	23.72 2322	22.48 6992	34.96 4706	37.66 421	19.09 2058	36.64 2178	27.91 0444	24.99 5422	30.62 1058	22.32 7023	25.27 0927	67.01 217	62.23 0824	54.44 114
Butyl acetate	34.49 3683	35.04 6913	38.02 859	88.73 0415	69.96 7186	119.0 3375	78.71 669	60.52 447	55.32 5424	62.69 5183	72.23 122	66.20 121	57.87 607	70.03 8284	63.89 2742	67.31 656	52.51 9268	46.95 14	74.18 197	65.49 023	61.90 644	60.82 8857	65.26 138	60.45 115	51.59 9438	59.02 03	50.24 191
3- methyl butano ate	63.53 0586	61.03 549	68.59 188	126.5 8126	120.7 5122	149.5 0151	65.66 353	69.58 726	71.91 35	51.43 5024	47.37 5767	39.62 6076	47.65 3496	45.36 5025	46.63 146	38.95 2866	31.71 6413	40.13 265	26.36 184	40.08 1547	28.69 6966	41.34 354	36.85 7693	48.98 436	80.76 0765	65.24 361	71.75 7965
1,4- Dioxan e	65.23 028	61.28 4332	75.02 404	126.7 3678 6	124.7 3937	129.2 0523	89.37 919	96.98 668	98.93 743	83.22 2534	80.27 6405	93.75 394	83.75 577	84.95 777	79.38 99	67.40 543	69.51 616	64.33 7105	44.36 5208	52.48 15	49.25 098	75.12 1796	75.86 8324	87.05 072	108.5 9788 5	110.8 6858	104.3 9199
lsobuty l acetate	48.81 7726	59.09 5844	63.10 622	112.8 1933 6	109.4 1107	111.0 3078	62.26 4153	61.84 2007	59.79 7935	34.69 3645	48.48 6675	30.36 9993	28.55 477	31.15 4293	35.57 7927	34.72 9195	36.76 882	39.87 492	31.16 096	41.78 346	44.85 845	38.53 072	37.77 7527	38.88 843	73.95 9785	55.34 5417	62.94 6247
Limon ene	44.33 4103	63.29 285	42.27 226	146.5 3316	110.4 7532	118.6 9604	28.25 4826	29.84 5644	32.61 847	40.42 593	38.45 962	44.86 5116	90.91 89	99.91 281	101.9 2355	81.58 506	87.07 7385	85.60 4324	19.89 1912	21.67 3807	18.30 1092	18.68 3245	20.02 522	27.97 4876	35.96 4523	36.83 992	32.64 513
Butano ic acid	562.3 215	827.4 218	643.8 532	614.5 608	548.8 1726	655.5 644	1955. 8595	1837. 7811	1949. 9362	1285. 2379	1649. 54	1325. 1462	523.0 9753	542.4 384	559.5 553	487.8 1955	614.3 586	509.2 3117	698.9 253	808.1 8756	802.2 22	1855. 2958	952.9 099	1090. 2825	996.7 5964	852.0 128	697.3 4784
Furfury l alcohol	317.4 5297	307.5 77	371.0 387	373.9 8483	376.2 9776	464.9 904	454.0 5682	524.9 172	427.3 706	8582. 55	1063 8.36	9008. 107	1157. 6146	1080. 4465	910.3 999	1025. 2589	941.3 965	1093. 8707	831.7 721	803.7 75	777.8 1085	992.8 137	739.2 9346	685.1 8787	619.7 1985	494.4 4278	561.4 4385
2- Methyl propan oic acid	206.2 9332	253.0 3143	249.8 9423	226.2 0079	230.2 2227	310.0 3656	312.3 0725	287.4 4513	317.3 752	689.1 9824	889.7 615	690.8 1793	305.6 9067	336.5 6058	346.2 077	264.0 2054	304.6 664	299.5 9402	417.3 7466	399.6 4236	328.9 9307	562.7 88	333.0 4788	311.8 318	242.2 1341	246.0 5716	224.9 6991
Acetop henone	277.7 98	305.9 2175	386.0 9152	326.0 9805	430.0 8124	363.4 6677	352.4 2657	468.6 0974	303.7 4658	504.1 321	416.4 904	464.7 5266	478.8 6563	525.3 4375	520.7 6904	612.7 6556	605.3 025	619.1 5546	422.7 648	390.2 2632	377.8 219	340.8 42	340.1 488	488.1 3727	364.4 688	353.7 5964	362.8 4467
(E)-2- Hepten al	31.46 3127	31.00 9876	36.02 007	51.83 0505	47.96 899	58.58 2603	101.0 7482	69.07 624	66.02 346	41.41 2415	47.47 797	53.17 026	44.34 521	47.14 9143	44.69 4035	47.00 6947	39.33 0574	50.42 8543	38.33 742	51.94 604	39.86 381	45.02 953	55.56 3156	44.02 0824	82.41 6016	50.92 1783	54.65 2214
Cycloh exanon e-D	49.29 5414	51.22 173	48.57 999	71.97 793	64.20 38	74.80 186	70.82 703	75.97 9416	62.26 6373	67.22 102	52.20 3773	59.29 3583	41.07 9144	50.46 6312	43.17 6537	51.53 7228	61.66 6485	55.92 9756	54.34 56	54.64 11	57.20 9522	56.97 1786	58.70 4803	50.77 9587	50.01 9726	60.29 118	50.37 966
I- Octen- 3-one	44.45 408	53.01 9176	56.26 3027	74.57 967	60.54 4468	56.64 518	133.7 7994	94.80 2635	85.91 0934	70.26 9356	74.34 86	82.20 05	47.55 5733	57.21 3966	47.57 351	64.65 482	49.30 6526	49.28 875	46.42 705	54.86 106	66.29 8965	58.81 8115	91.87 873	70.32 712	87.80 392	91.37 882	72.49 561
Dimeth ylpyrid ine	42.55 443	36.72 2164	55.99 419	52.62 814	58.62 2597	56.45 188	62.11 0847	56.59 6302	72.09 124	54.66 11	47.73 126	59.70 24	57.64 944	53.41 0217	52.70 1458	47.68 46	48.44 6682	46.22 931	46.81 8092	41.57 0164	38.45 0737	35.59 348	42.52 9987	43.95 6394	69.01 18	66.56 558	65.49 023
Ethylp yrazine	61.98 8647	74.42 637	82.41 3795	103.4 9438	121.7 0215 6	140.9 4753	180.2 1144	180.1 981	176.3 3215	136.6 683	135.3 0634	143.9 7807	94.14 72	97.23 108	93.09 406	106.2 9609	94.92 4835	116.8 0527 5	69.76 278	71.07 8094	74.05 088	62.23 3047	60.91 551	61.16 4352	302.1 2912	276.4 649	307.2 3483
1- Hydrox y-2- propan one	46.42 705	75.24 6216	50.76 4034	143.4 9594	138.2 68	151.7 9442	98.75 525	99.16 1835	108.7 4453	174.5 9024	184.7 1283	192.7 3804	76.32 158	74.87 5175	176.3 1659	75.81 722	77.06 144	144.0 714	91.84 7626	132.8 0013	73.95 7565	96.56 009	75.55 9494	74.53 968	94.67 8215	62.14 6397	58.14 935
2- Ethyl- 5- methyl pyrazin e	169.6 556	182.8 3762	141.8 318	154.4 7838	153.6 1409	161.2 3714	177.4 8972	186.4 5251	234.3 193	304.5 1312	305.5 107	288.4 4717	162.6 6576	186.2 0367	209.3 1055	230.9 577	199.6 3899	184.8 6613	158.8 4203	164.2 988	159.8 8849	167.1 8938	183.0 8202	172.4 9286	186.1 6812	178.0 9406	211.8 7453

1	201.3	210.0	231.4	419.7	398.7	425.9	381.0	396.0	396.3	399.7	408.5	414.3	141.9	136.4	107.9	156.8	147.0	132.6	292.7	292.8	309.4	252.4	205.1	239.3	381.5	365.3	382.8
	9645	0375	6205	4313	9364	153	9244	5856	674	7344	2518	7744	74	0613	5356	957	9084	4015	9083	6414	3887	2265	402	0951	9012	9975	0545
2	478.4	489.1	522.7	1300.	1298.	1211.	330.1	351.0	360.7	285.0	293.7	295.7	145.0	148.4	155.5	122.3	123.2	132.9	88.40	85.36	105.7	62.22	64.66	69.77	522.5	510.9	508.5
	346	6153	1313	4707	2045	878	373	4236	095	478	751	5027	8676	0837	2484	7314	8853	8898	603	6585	473	416	815	833	843	664	3354
3	1377.	1600.	1768.	2840.	2908.	2917.	2834.	2734.	2766.	2179.	2107.	1984.	4118.	4068.	4073.	1953.	1931.	1993.	1112.	1133.	1223.	1636.	1641.	1667.	2015.	2011.	1886.
	8876	8379	3939	582	0295	9966	7075	988	0867	5208	963	1033	8945	017	205	9622	8173	0571	5051	2324	8403	387	2594	4746	1465	6183	3812
4	303.5	318.6	327.6	549.0	538.1	550.7	350.3	348.4	334.0	368.0	378.9	375.7	315.4	317.4	312.7	307.2	308.1	318.4	222.6	220.1	222.6	231.5	259.5	282.3	467.0	439.5	428.5
	644	4163	7776	794	9257	969	4695	0063	6326	7037	728	0895	1333	8407	0718	2818	7245	6167	8144	73	7033	6203	9467	7494	389	2173	3708
5	1779. 7251	1853. 696	1907. 053	2706. 4	2526. 2373	2817. 6128	1995. 4656	1855. 7179	1940. 8778	1424. 128	1711. 7198	1414. 3499	2115. 3704	2100. 1797	2242. 2427	1903. 6869	2022. 4341	1987. 6937	899.9 463	1007. 8865 4	820.7 519	902.9 4574	808.7 4963	989.0 8105	1945. 7458	1811. 986	1802. 7432
6	575.5	591.5	594.5	597.1	626.2	577.8	668.2	647.7	667.3	714.1	734.9	716.1	674.3	652.9	668.4	729.3	743.1	731.2	582.4	553.3	581.1	620.5	618.9	640.4	731.7	735.3	738.7
	39	072	089	417	564	808	065	5024	0664	536	409	7773	92	9817	709	442	3055	7716	4	831	8243	5524	9554	871	304	986	958
7	293.8	308.0	322.4	256.2	257.1	273.6	370.3	346.7	348.5	538.4	522.0	519.9	500.7	511.8	514.5	603.8	618.1	590.3	289.0	143.4	287.4	218.3	400.4	353.3	437.8	437.6	423.4
	0396	658	165	0642	1514	943	8104	6315	9616	4806	7104	3365	2162	396	791	2495	0455	9185	7593	0929	6735	3334	1556	553	6426	0873	469
8	252.1	270.8	287.1	227.3	248.9	253.9	804.4	766.9	758.6	1040.	1107.	1045.	842.3	866.0	890.2	1284.	1308.	1329.	1201.	1102.	1168.	1061.	1085.	1100.	733.1	643.3	611.8
	6493	926	0965	7392	0775	2682	793	9066	077	9049	7771	2664	702	4803	903	207	1426	8431	962	6825	1327	0479	4368	3807	168	977	9014
9	538.5	554.7	578.7	855.4	854.1	853.6	1053.	994.8	1028.	784.1	774.2	725.5	547.7	522.4	545.4	564.7	559.2	572.8	349.5	357.7	373.2	245.8	252.2	259.8	809.8	805.7	805.8
	5023	673	34	611	058	814	096	689	265	653	382	582	6855	4434	201	899	176	706	982	767	7606	6607	9156	435	5834	2797	813
10	342.9	356.3	351.9	381.6	458.5	402.5	448.9	459.3	461.7	573.6	560.5	558.9	304.6	267.9	301.5	342.2	331.1	326.9	678.3	721.3	637.2	703.9	679.3	696.9	403.3	375.8	357.7
	261	525	4443	1234	1602	7516	7775	6032	932	505	1514	9316	1533	176	8255	5952	2158	0012	1573	768	3663	6216	467	19	239	467	8558
11	548.4	512.9	567.6	886.0	804.7	893.5	615.0	577.1	628.9	553.4	580.3	552.1	704.8	675.7	708.5	590.5	624.5	603.6	323.6	244.6	327.3	405.9	468.1	458.6	696.7	710.3	706.3
	44	794	694	155	2595	6964	34	4984	8035	097	4924	7	287	207	991	4736	7007	117	0297	9518	2227	1455	165	338	991	01	284
12	1694.	1788.	1822.	3144.	3226.	2877.	2280.	2198.	2370.	239.2	241.2	230.7	508.2	489.9	494.5	263.6	270.9	267.3	102.6	97.28	114.1	107.2	111.8	119.7	1969.	2053.	2048.
	9252	7057	053	133	86	5664	631	9817	85	9395	136	6662	6025	147	361	406	8593	688	9675	885	5909	4036	6395	6917	1682	0818	7693
13	30.79	39.05	36.32	140.7	139.4	144.7	36.94	41.53	42.10	31.63	29.75	31.79	34.00	25.13	26.19	27.62	28.34	30.15	23.96	26.08	37.62	28.07	24.57	29.79	49.25	47.23	47.07
	2137	729	2235	8755	989	4016	2123	906	1177	8649	8993	6398	9327	5397	5202	8273	5919	4476	0056	8554	1998	9302	772	6764	9865	8014	8045
14	40.25	41.29	53.81	137.8	169.7	182.6	67.05	51.21	63.53	96.36	127.0	101.1	56.89	55.19	54.89	61.11	74.83	81.57	43.98	45.14	41.25	38.38	60.72	92.07	53.38	49.05	51.69
	263	688	4587	192	6224	3544	438	284	9474	457	3007	3036	1804	6556	661	103	296	839	0835	062	689	8523	6654	203	3556	9902	7197
15	183.6 2859	191.2 6497	187.9 1669	1033. 8862	997.4 9066	1066. 1381	630.0 468	539.1 368	545.2 535	319.7 1255	324.8 6493	379.6 3492	285.4 2328	409.2 9614	330.0 9067	311.3 9407	232.7 2626	202.4 9402	170.8 5538	117.2 9407 5	111.9 0172 6	108.9 0005 5	125.3 5926	129.2 3856	592.2 315	532.8 779	548.1 574
16	117.9 4951	121.6 5105 4	125.7 0586 4	502.4 7018	457.6 984	488.3 8834	128.3 2538	127.9 2546	138.7 7458	67.19 881	66.48 3376	50.83 5133	154.4 8059	157.2 712	161.8 9923	96.69 118	93.85 392	104.4 3642 4	35.75 3452	27.12 392	28.75 2512	27.09 5037	41.21 9116	31.56 755	142.7 8273	119.5 8476	122.0 9319
17	46.88	55.22	52.91	56.21	69.69	103.4	147.9	134.9	117.0	100.5	92.30	93.14	46.38	65.07	45.41	65.35	44.51	46.77	157.4	139.9	141.6	86.34	71.55	64.38	74.71	73.24	99.17
	919	3217	031	415	168	0106	7511	4196	0079	4381	754	7385	2614	4745	8346	248	407	81	0895	5659	2517	4185	801	821	52	436	517
18	39.74	40.04	36.45	50.40	51.95	47.14	49.69	40.49	50.48	180.8	199.7	175.3	84.75	85.68	87.79	81.10	85.43	89.32	38.55	30.41	27.87	36.86	34.86	38.53	48.80	47.63	43.57
	8276	1553	9988	8546	715	9143	5343	2584	631	8908	0343	5455	781	43	503	292	99	364	0716	4429	7117	436	2503	5164	2174	7943	2018

Disclaimer: None

Conflict of Interest: None

Source of Funding: This work was supported by the Natural Science Foundation of China (grant number 32200328), the Science Foundation for Young Scholars of Institute of Tobacco Research of Chinese Academy of Agricultural Sciences (grant number 2016A02), and Key Projects of China Tobacco Hubei Industry Co., Ltd. (Grant No. 2021JCYL3SX2A006)

References

- Allem JP, Uppu SP, Boley CT and Unger JB, 2019. Characterizing swisher little cigar-related posts on twitter in 2018: text analysis. J. Med. Internet Res. 21: e14398.
- Baker RR, da Silva JRP and Smith G, 2004. The effect of tobacco ingredients on smoke chemistry. Part I: flavourings and additives[J]. Food Chem. Toxicol. 42: 3–37.
- Cornacchione RJ, K Suerken C, Reboussin BA, Denlinger-Apte RL, Spangler JG and Sutfin EL, 2022. Cigar harm beliefs and associations with cigar use among young adults. Subst. Use Misuse 57: 1478–1485.

- Gao J, Berg CJ, Huang L, Zheng and Fu H, 2015. What are the sales practices of internet cigar vendors in China? Tob. Control 24: 298–302.
- Gu S, Zhang J, Wang J, Wang X and Du D, 2021. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. TrAc, Trends Anal. Chem. 144: 116435.
- Kaneko H and Harada M, 1972. The aroma of cigar tobacco: part III. Isolation and synthesis of r-(+)-3isopropyl-5-hydroxypentanoic acid lactone. Agric. Biol. Chem. 36: 658–662.
- Kim IJ, Bayer T, Terholsen H and Bornscheuer UT, 2022. α -Dioxygenases (α -DOXs): promising biocatalysts for the environmentally friendly production of aroma compounds. ChemBioChem 23: e202100693.
- Lawyer GR, Jackson M, Prinz M, Lamb T, Wang Q, Muthumalage T and Rahman I, 2019. Classification of flavors in cigarillos and little cigars and their variable cellular and acellular oxidative and cytotoxic responses. PLoS One 14: e0226066.
- Li C, Tian S, You J, Liu J, Li E, Wang C, Wang Q, Zhu Z, Fan D and Tian R, 2023. Qualitative determination of volatile substances in different flavored cigarette paper by using headspace-gas chromatography-ion

mobility spectrometry (HS-GC-IMS) combined with chemometrics. Heliyon 9: e12146.

- Li C, Wan H, Wu X, Yin J, Zhu L, Chen H, Song X, Han L, Yang W and Yu H, 2022. Discrimination and characterization of the volatile organic compounds in *Schizonepetae Spica* from six regions of China using HS-GC-IMS and HS-SPME-GC-MS. Molecules 27: 4393.
- Li M, Yang R, Zhang H, Wang S, Chen D and Lin S, 2019. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of *Tricholoma matsutake* Singer. Food Chem. 290: 32–39.
- Liu T, Zhang Q, Chang D, Niu Y, Lu W and Xiao Z, 2018. Characterization of tobacco leaves by near-infrared reflectance spectroscopy and electronic nose with support vector machine. Anal. Lett. 51: 1935–1943.
- Mao S, Lu C, Li M, Ye Y, Wei X and Tong H, 2018. Identification of key aromatic compounds in congou black tea by partial least-square regression with variable importance of projection scores and gas chromatography–mass spectrometry/gas chromatography–olfactometry. J. Sci. Food Agric. 98: 5278–5286.
- Ng LK, Hupé M, Vanier M and Moccia D, 2001. Characterization of cigar tobaccos by gas chromatographic/mass spectrometric analysis of nonvolatile organic acids: application to the authentication of Cuban cigars. J. Agric. Food Chem. 49: 1132-1138.
- Qi D, Zhou Y, Wang J, Fei T, Wu D and Lu J, 2022. Determination of volatiles in flue-cured tobacco by gas chromatography–mass spectrometry (GC–MS) with chemometrics. Anal. Lett. 55: 1398–1411.
- Rambla-Alegre M, Tienpont B, Mitsui K, Masugi E, Yoshimura Y, Nagata H, David F and Sandra P, 2014. Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization. J. Chromatogr. A 1365: 191–203.
- Vu AT, Hassink MD, Taylor KM, Mcguigan M, Blasiole A, Valentin-Blasini L, Williams K and Watson CH, 2021. Volatile organic compounds in mainstream smoke of sixty domestic little cigar products. Chem. Res. Toxicol. 34: 704–712.
- Wang S, Chen H and Sun B, 2020. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 315: 126158.
- Wang X, Kim Y, Borowiecki M, Tynan MA, Emery S and King BA, 2022. Trends in cigar sales and prices, by product and flavor type—the United States, 2016–

2020. Nicotine Tob. Res. 24: 606–611.

- Wen J and Huang SS, 2021. The effects of fashion lifestyle, perceived value of luxury consumption, and tourist–destination identification on visit intention: a study of Chinese cigar aficionados. J. Destin. Mark. Manage. 22: 100664.
- Yang R, Yang J, Yu J, Wang S, Yang C and Xu F, 2022. Effects of different nitrogen application rates on the quality and metabolomics of cigar tobacco. Agron. J. 114: 1155–1167.
- Ying T, Wei W, Wen J, Wang L and Ye S, 2018. Chinese cigar tourists to Cuba: a motivation-based segmentation. J. Destin. Mark. Manage. 10: 112–121.
- Yu H, Liu Y, Shang M, Huang G, Fang Y, Lin L, Qu Y and Zuo Q, 2021. Cigar leaf differences from different producing areas based on aroma component analysis. Tob. Sci. Tech. 54: 58–71.
- Zeki ÖC, Eylem CC, Reçber T, Kır S and Nemutlu E, 2020. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J. Pharmaceut. Biomed. 190: 113509.
- Zhang H, Yang J, Zhu F, Luo C, Pang Y, Zhu B, Luo Y, Li X, Jiang X and Li D, 2021a. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) for the characterization of cigar leaves. LC GC N. Am. 39: 390-396.
- Zhang H, Jin J, Xu G, Li Z, Zhai N, Zheng Q, Lv H, Liu P, Jin L, Chen Q, Cao P and Zhou H, 2021b. Reconstruction of the full-length transcriptome of cigar tobacco without a reference genome and characterization of anion channel/transporter transcripts. BMC Plant Biol. 21: 299.
- Zheng T, Zhang Q, Li P, Wu X, Liu Y, Yang Z, Li D, Zhang J and Du G, 2022. Analysis of microbial community, volatile flavor compounds, and flavor of cigar tobacco leaves from different regions. Front. Microbiol. 13: 907270.

Contribution of Authors

Wang J: Performed the experiments & collected data

Pan Y, Liu L & Wu C: Analyzed and interpreted data and wrote the manuscript

Shi Y & Yuan X: Conceived idea, designed and performed the experiments & collected data

