Tag Archives: 2024-3

Isolation and molecular identification of Serratia nematodiphila associated with Red Palm Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) as bio-insecticide in Egypt

Mahmoud Abbas Ali1, Mervat A. B. Mahmoud2, Muhammad Shoaib3, Zeeshan Ahmad Bhutta4*, Nada M. Ali5, Nadeem Ali6, Hani Z. Asfour7, Nisreen Rajeh8, Mohamed R. Eletmany9,10

1Department of Plant Protection, Faculty of Agriculture, South Valley University, Qena, Egypt

2Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt

3Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou 730050, China

4Laboratory of Veterinary Immunology and Biochemistry, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea

5Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha 65799,  Saudi Arabia

6Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

7Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia

8Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

9Department of Chemistry, Faculty of Science, South Valley University, Qena, Egypt

10TECS Department, Wilson College of Textiles, NC State University, Raleigh 27606, USA

Abstract

The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is a major date palm pest. In this study, we aimed to isolate and identify the Serratia nematodiphila from RPW as potential biocontrol agents. We isolated the bacteria from infected RPW larvae and adults and identified using colony morphology characteristics, biochemical tests, and PCR followed by 16S rRNA sequencing. This is the first study reporting the Serratia nematodiphila as an extracellular symbiont of RPW from Egypt. The potential of this bacteria to be used as biocontrol agent was conducted by a screening bioassay through its effect on RPW eggs. The study noted that treated eggs were unable to hatch and not turned red in color, indicating the potential of this bacteria to be used as bio-pesticide. These results presented novel insights into the microbiome of RPW and suggest the potential of Serratia nematodiphila as a biocontrol agent for RPW management. Moreover, further studies are required to explore the mechanism and potential of these bacteria in field applications. Nevertheless, this study provides a promising direction for the development of sustainable and environmentally friendly RPW management strategies.

Keywords: Red Palm Weevils (RPW), Rhynchophorus ferrugineus, Coleoptera, Curculionidae, Serratia nematodiphila, Biocontrol agent

Analysis of the azoreductase gene harbored by Alcaligenes sp. YB4 capable of concurrent removal of sulphonated azo dye and hexavalent chromium

Yasir Bilal1, Sabir Hussain1*, Muhammad Shahid2, Tanvir Shahzad1, Faisal Mahmood1

1Department of Environmental Sciences, Government College University Faisalabad, Pakistan.

2Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Pakistan

Abstract

Continuous discharge of textile wastewater consisting of variety of pollutants is a serious threat to ecosystems. Microbial bioremediation might serve as an effective approach for treating these unwanted contaminants. In this study, several bacteria isolated from textile wastewater were studied for decolorization of Congo red (CR) dye. The strain Alcaligenes sp. YB4 showed the most efficient potential to decolorize CR dye. Moreover, this strain efficiently decolorized CR while concurrently removing hexavalent chromium [Cr(VI)] in the same medium with maximum removal (> 90 %) of both pollutants at pH 7 and pH 8. The potential of YB4 for concurrent removal of both pollutants was observed to decrease with increasing concentration of NaCl. Similarly, Alcaligenes sp. YB4 efficiently removed the 91.6 % of CR and 95.7 % of Cr(VI) simultaneously, under static condition as compared to the shaking condition. While MS media amended with yeast extract showed about 92.2 % and 90.1 % removal of CR and Cr (VI) within 48 hours of incubation, respectively. Moreover, it was also noticed that presence of heavy metals effected the concurrent removal of both pollutants. The in-silico analysis of the azoreductase amplified from the strain YB4 identified the binding of CR with azoreductase and proposed the hypothesis that their association may be the primary cause of CR degradation. This study indicated that Alcaligenes sp. YB4, having azoreductase gene, is a potential resource to treat textile wastewater.

 Keywords: Congo red, Hexavalent chromium, Azoreductase, Molecular docking, Azo dyes